Nitric oxide synthase induction in glial cells: Effect on neuronal survival

In primary rat cortical glial cell cultures lipopolysaccharide (LPS) induced a dose- and time-dependent increase of intracellular cyclic GMP concentration associated with a release of nitrite. The LPS-induced cyclic GMP and nitrite increase was enhanced by interferon-γ and was prevented by L-N G- ni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Life sciences (1973) 1993, Vol.52 (23), p.1883-1890
Hauptverfasser: Demerlé-Pallardy, Caroline, Lonchampt, Marie-Odile, Chabrier, Pierre-Etienne, Braquet, Pierre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In primary rat cortical glial cell cultures lipopolysaccharide (LPS) induced a dose- and time-dependent increase of intracellular cyclic GMP concentration associated with a release of nitrite. The LPS-induced cyclic GMP and nitrite increase was enhanced by interferon-γ and was prevented by L-N G- nitroarginine, dexamethasone and cycloheximide. Thus indicates that LPS effect occured via the production of nitric oxide (NO) and involved new protein synthesis suggesting the induction of NO syntahse in these cells. Furthermore this induction was Ca 2+-independent and was blocked by an inhibitor of the synthesis of tetrahydrobiopterin. The inducible NO synthase was also expressed by C6 glioma cells. In primary mixed cultures containing both neuronal and glial cells, the effects of LPS were less important than in primary glial cell cultures suggesting that glial cells rather than neurons expressed the inducible form of NO synthase. On the other hand no change on neuronal viability was observed after NO synthase induction by LPS in this culture type. This study indicates that glial cells are able to induce NO synthase without affecting neuronal survival.
ISSN:0024-3205
1879-0631
DOI:10.1016/0024-3205(93)90009-R