Electrical conductivity imaging by magnetic resonance electrical impedance tomography (MREIT)
Magnetic resonance electrical impedance tomography (MREIT) is a recently developed imaging technique that combines MRI and electrical impedance tomography (EIT). In MREIT, cross‐sectional electrical conductivity images are reconstructed from the internal magnetic field density data produced inside a...
Gespeichert in:
Veröffentlicht in: | Magnetic resonance in medicine 2003-10, Vol.50 (4), p.875-878 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 878 |
---|---|
container_issue | 4 |
container_start_page | 875 |
container_title | Magnetic resonance in medicine |
container_volume | 50 |
creator | Oh, Suk H. Han, Jae Y. Lee, Soo Y. Cho, Min H. Lee, Byung I. Woo, Eung J. |
description | Magnetic resonance electrical impedance tomography (MREIT) is a recently developed imaging technique that combines MRI and electrical impedance tomography (EIT). In MREIT, cross‐sectional electrical conductivity images are reconstructed from the internal magnetic field density data produced inside an electrically conducting subject when an electrical current is injected into the subject. In this work the results of an electrical conductivity imaging experiment are presented, along with some practical considerations regarding MREIT. The MREIT experiment was performed with a 0.3 Tesla MRI system on a phantom made of two compartments with different electrical conductivities. The current density inside the phantom was measured by the MR current density imaging (MRCDI) technique. The measured current density was then used for conductivity image reconstruction by the J‐substitution algorithm. The conductivity phantom images obtained with an injection current of 28mA showed conductivity errors of about 25.5%. Magn Reson Med 50:875–878, 2003. © 2003 Wiley‐Liss, Inc. |
doi_str_mv | 10.1002/mrm.10588 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_75733828</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18938865</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4558-748d122d94583be91d94547b759e5e22f968df358223686dba0d601f68f854cc3</originalsourceid><addsrcrecordid>eNqFkE1vEzEQhq2qqA2FA38A7aWIHrb159o-oiqUVklBUWlPyPJ6Z4PpfgR7A-y_r9sEcqo4zavR885ID0JvCD4lGNOzNrQpCKX20IQISnMqNN9HEyw5zhnR_BC9jPEHxlhryQ_QIeGCMi3FBH2bNuCG4J1tMtd31doN_pcfxsy3dum7ZVaOWUodDN5lAWLf2c5BBruWb1dQPS2Hvu2Xwa6-j9n7-WJ6eXPyCr2obRPh9XYeoa8fpzfnn_LZ54vL8w-z3HEhVC65qgilleZCsRI0eUxcllJoEEBprQtV1UwoSlmhiqq0uCowqQtVK8GdY0fo3ebuKvQ_1xAH0_rooGlsB_06GikkY4qq_4JEaaZUIRJ4sgFd6GMMUJtVSErCaAg2j9JNkm6epCf27fboumyh2pFbywk43gI2JmV1SLp83HGCaIY1S9zZhvvtGxif_2jmi_nf1_mm4eMAf_41bLg3hWRSmLvrC3PLNZtdLb4Yzh4AXN6nAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18938865</pqid></control><display><type>article</type><title>Electrical conductivity imaging by magnetic resonance electrical impedance tomography (MREIT)</title><source>MEDLINE</source><source>Wiley Free Content</source><source>Wiley Online Library All Journals</source><creator>Oh, Suk H. ; Han, Jae Y. ; Lee, Soo Y. ; Cho, Min H. ; Lee, Byung I. ; Woo, Eung J.</creator><creatorcontrib>Oh, Suk H. ; Han, Jae Y. ; Lee, Soo Y. ; Cho, Min H. ; Lee, Byung I. ; Woo, Eung J.</creatorcontrib><description>Magnetic resonance electrical impedance tomography (MREIT) is a recently developed imaging technique that combines MRI and electrical impedance tomography (EIT). In MREIT, cross‐sectional electrical conductivity images are reconstructed from the internal magnetic field density data produced inside an electrically conducting subject when an electrical current is injected into the subject. In this work the results of an electrical conductivity imaging experiment are presented, along with some practical considerations regarding MREIT. The MREIT experiment was performed with a 0.3 Tesla MRI system on a phantom made of two compartments with different electrical conductivities. The current density inside the phantom was measured by the MR current density imaging (MRCDI) technique. The measured current density was then used for conductivity image reconstruction by the J‐substitution algorithm. The conductivity phantom images obtained with an injection current of 28mA showed conductivity errors of about 25.5%. Magn Reson Med 50:875–878, 2003. © 2003 Wiley‐Liss, Inc.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.10588</identifier><identifier>PMID: 14523975</identifier><identifier>CODEN: MRMEEN</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Algorithms ; Biological and medical sciences ; current density imaging ; Electric Conductivity ; Electric Impedance ; electrical conductivity imaging ; electrical impedance tomography ; Humans ; Image Processing, Computer-Assisted ; J-substitution algorithm ; Magnetic Resonance Imaging - instrumentation ; Magnetic Resonance Imaging - methods ; Medical sciences ; MRCDI ; MREIT ; Phantoms, Imaging ; Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects) ; Technology. Biomaterials. Equipments. Material. Instrumentation ; Tomography - methods</subject><ispartof>Magnetic resonance in medicine, 2003-10, Vol.50 (4), p.875-878</ispartof><rights>Copyright © 2003 Wiley‐Liss, Inc.</rights><rights>2004 INIST-CNRS</rights><rights>Copyright 2003 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4558-748d122d94583be91d94547b759e5e22f968df358223686dba0d601f68f854cc3</citedby><cites>FETCH-LOGICAL-c4558-748d122d94583be91d94547b759e5e22f968df358223686dba0d601f68f854cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.10588$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.10588$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27923,27924,45573,45574,46408,46832</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15193093$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14523975$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oh, Suk H.</creatorcontrib><creatorcontrib>Han, Jae Y.</creatorcontrib><creatorcontrib>Lee, Soo Y.</creatorcontrib><creatorcontrib>Cho, Min H.</creatorcontrib><creatorcontrib>Lee, Byung I.</creatorcontrib><creatorcontrib>Woo, Eung J.</creatorcontrib><title>Electrical conductivity imaging by magnetic resonance electrical impedance tomography (MREIT)</title><title>Magnetic resonance in medicine</title><addtitle>Magn. Reson. Med</addtitle><description>Magnetic resonance electrical impedance tomography (MREIT) is a recently developed imaging technique that combines MRI and electrical impedance tomography (EIT). In MREIT, cross‐sectional electrical conductivity images are reconstructed from the internal magnetic field density data produced inside an electrically conducting subject when an electrical current is injected into the subject. In this work the results of an electrical conductivity imaging experiment are presented, along with some practical considerations regarding MREIT. The MREIT experiment was performed with a 0.3 Tesla MRI system on a phantom made of two compartments with different electrical conductivities. The current density inside the phantom was measured by the MR current density imaging (MRCDI) technique. The measured current density was then used for conductivity image reconstruction by the J‐substitution algorithm. The conductivity phantom images obtained with an injection current of 28mA showed conductivity errors of about 25.5%. Magn Reson Med 50:875–878, 2003. © 2003 Wiley‐Liss, Inc.</description><subject>Algorithms</subject><subject>Biological and medical sciences</subject><subject>current density imaging</subject><subject>Electric Conductivity</subject><subject>Electric Impedance</subject><subject>electrical conductivity imaging</subject><subject>electrical impedance tomography</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>J-substitution algorithm</subject><subject>Magnetic Resonance Imaging - instrumentation</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Medical sciences</subject><subject>MRCDI</subject><subject>MREIT</subject><subject>Phantoms, Imaging</subject><subject>Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)</subject><subject>Technology. Biomaterials. Equipments. Material. Instrumentation</subject><subject>Tomography - methods</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1vEzEQhq2qqA2FA38A7aWIHrb159o-oiqUVklBUWlPyPJ6Z4PpfgR7A-y_r9sEcqo4zavR885ID0JvCD4lGNOzNrQpCKX20IQISnMqNN9HEyw5zhnR_BC9jPEHxlhryQ_QIeGCMi3FBH2bNuCG4J1tMtd31doN_pcfxsy3dum7ZVaOWUodDN5lAWLf2c5BBruWb1dQPS2Hvu2Xwa6-j9n7-WJ6eXPyCr2obRPh9XYeoa8fpzfnn_LZ54vL8w-z3HEhVC65qgilleZCsRI0eUxcllJoEEBprQtV1UwoSlmhiqq0uCowqQtVK8GdY0fo3ebuKvQ_1xAH0_rooGlsB_06GikkY4qq_4JEaaZUIRJ4sgFd6GMMUJtVSErCaAg2j9JNkm6epCf27fboumyh2pFbywk43gI2JmV1SLp83HGCaIY1S9zZhvvtGxif_2jmi_nf1_mm4eMAf_41bLg3hWRSmLvrC3PLNZtdLb4Yzh4AXN6nAw</recordid><startdate>200310</startdate><enddate>200310</enddate><creator>Oh, Suk H.</creator><creator>Han, Jae Y.</creator><creator>Lee, Soo Y.</creator><creator>Cho, Min H.</creator><creator>Lee, Byung I.</creator><creator>Woo, Eung J.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Williams & Wilkins</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>200310</creationdate><title>Electrical conductivity imaging by magnetic resonance electrical impedance tomography (MREIT)</title><author>Oh, Suk H. ; Han, Jae Y. ; Lee, Soo Y. ; Cho, Min H. ; Lee, Byung I. ; Woo, Eung J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4558-748d122d94583be91d94547b759e5e22f968df358223686dba0d601f68f854cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algorithms</topic><topic>Biological and medical sciences</topic><topic>current density imaging</topic><topic>Electric Conductivity</topic><topic>Electric Impedance</topic><topic>electrical conductivity imaging</topic><topic>electrical impedance tomography</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>J-substitution algorithm</topic><topic>Magnetic Resonance Imaging - instrumentation</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Medical sciences</topic><topic>MRCDI</topic><topic>MREIT</topic><topic>Phantoms, Imaging</topic><topic>Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)</topic><topic>Technology. Biomaterials. Equipments. Material. Instrumentation</topic><topic>Tomography - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oh, Suk H.</creatorcontrib><creatorcontrib>Han, Jae Y.</creatorcontrib><creatorcontrib>Lee, Soo Y.</creatorcontrib><creatorcontrib>Cho, Min H.</creatorcontrib><creatorcontrib>Lee, Byung I.</creatorcontrib><creatorcontrib>Woo, Eung J.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oh, Suk H.</au><au>Han, Jae Y.</au><au>Lee, Soo Y.</au><au>Cho, Min H.</au><au>Lee, Byung I.</au><au>Woo, Eung J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrical conductivity imaging by magnetic resonance electrical impedance tomography (MREIT)</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn. Reson. Med</addtitle><date>2003-10</date><risdate>2003</risdate><volume>50</volume><issue>4</issue><spage>875</spage><epage>878</epage><pages>875-878</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><coden>MRMEEN</coden><abstract>Magnetic resonance electrical impedance tomography (MREIT) is a recently developed imaging technique that combines MRI and electrical impedance tomography (EIT). In MREIT, cross‐sectional electrical conductivity images are reconstructed from the internal magnetic field density data produced inside an electrically conducting subject when an electrical current is injected into the subject. In this work the results of an electrical conductivity imaging experiment are presented, along with some practical considerations regarding MREIT. The MREIT experiment was performed with a 0.3 Tesla MRI system on a phantom made of two compartments with different electrical conductivities. The current density inside the phantom was measured by the MR current density imaging (MRCDI) technique. The measured current density was then used for conductivity image reconstruction by the J‐substitution algorithm. The conductivity phantom images obtained with an injection current of 28mA showed conductivity errors of about 25.5%. Magn Reson Med 50:875–878, 2003. © 2003 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>14523975</pmid><doi>10.1002/mrm.10588</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0740-3194 |
ispartof | Magnetic resonance in medicine, 2003-10, Vol.50 (4), p.875-878 |
issn | 0740-3194 1522-2594 |
language | eng |
recordid | cdi_proquest_miscellaneous_75733828 |
source | MEDLINE; Wiley Free Content; Wiley Online Library All Journals |
subjects | Algorithms Biological and medical sciences current density imaging Electric Conductivity Electric Impedance electrical conductivity imaging electrical impedance tomography Humans Image Processing, Computer-Assisted J-substitution algorithm Magnetic Resonance Imaging - instrumentation Magnetic Resonance Imaging - methods Medical sciences MRCDI MREIT Phantoms, Imaging Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects) Technology. Biomaterials. Equipments. Material. Instrumentation Tomography - methods |
title | Electrical conductivity imaging by magnetic resonance electrical impedance tomography (MREIT) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T02%3A12%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrical%20conductivity%20imaging%20by%20magnetic%20resonance%20electrical%20impedance%20tomography%20(MREIT)&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Oh,%20Suk%20H.&rft.date=2003-10&rft.volume=50&rft.issue=4&rft.spage=875&rft.epage=878&rft.pages=875-878&rft.issn=0740-3194&rft.eissn=1522-2594&rft.coden=MRMEEN&rft_id=info:doi/10.1002/mrm.10588&rft_dat=%3Cproquest_cross%3E18938865%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18938865&rft_id=info:pmid/14523975&rfr_iscdi=true |