Hypoxia-Inducible Factor-1 Mediates Activation of Cultured Vascular Endothelial Cells by Inducing Multiple Angiogenic Factors
ABSTRACT—Hypoxia-inducible factor-1 (HIF-1) mediates transcriptional activation of vascular endothelial growth factor (VEGF) and other hypoxia-responsive genes. Transgenic expression of a constitutively stable HIF-1α mutant increases the number of vascular vessels without vascular leakage, tissue ed...
Gespeichert in:
Veröffentlicht in: | Circulation research 2003-10, Vol.93 (7), p.664-673 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | ABSTRACT—Hypoxia-inducible factor-1 (HIF-1) mediates transcriptional activation of vascular endothelial growth factor (VEGF) and other hypoxia-responsive genes. Transgenic expression of a constitutively stable HIF-1α mutant increases the number of vascular vessels without vascular leakage, tissue edema, or inflammation. This study aimed to investigate the molecular basis by which HIF-1 mediates the angiogenic response to hypoxia. In primary human endothelial cells, hypoxia, desferrioxamine, or infection with Ad2/HIF-1α/VP16, an adenoviral vector encoding a constitutively stable hybrid form of HIF-1α, increased the mRNA and protein levels of VEGF, angiopoietin-2 (Ang-2), and angiopoietin-4 (Ang-4). Infection with Ad2/CMVEV (a control vector expressing no transgene) had no effect. Angiopoietin-1 (Ang-1) expression was not detected in human endothelial cells. Ang-4 was also induced by hypoxia or Ad2/HIF-1α/VP16 in human cardiac cells, whereas Ang-1 expression remained unchanged. Recombinant Ang-4 protein protected endothelial cells against serum starvation-induced apoptosis and increased cultured endothelial cell migration and tube formation. Ad2/HIF-1α/VP16 stimulated endothelial cell proliferation and tube formation. Hypoxia- or Ad2/HIF-1α/VP16-induced tube formation was significantly reduced by a Tie-2 inhibitor. These results suggest that HIF-1 mediates the angiogenic response to hypoxia by upregulating the expression of multiple angiogenic factors. Ang-4 can function similarly as Ang-1 and substitute for Ang-1 to participate in hypoxia-induced angiogenesis. Activation of the angiopoietin/Tie-2 system may play a role in the ability of HIF-1 to induce hypervascularity without excessive permeability. |
---|---|
ISSN: | 0009-7330 1524-4571 |
DOI: | 10.1161/01.RES.0000093984.48643.D7 |