Programmable computing with a single magnetoresistive element
The development of transistor-based integrated circuits for modern computing is a story of great success. However, the proved concept for enhancing computational power by continuous miniaturization is approaching its fundamental limits. Alternative approaches consider logic elements that are reconfi...
Gespeichert in:
Veröffentlicht in: | Nature 2003-10, Vol.425 (6957), p.485-487 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 487 |
---|---|
container_issue | 6957 |
container_start_page | 485 |
container_title | Nature |
container_volume | 425 |
creator | Koch, R Ney, A Pampuch, C Ploog, K. H |
description | The development of transistor-based integrated circuits for modern computing is a story of great success. However, the proved concept for enhancing computational power by continuous miniaturization is approaching its fundamental limits. Alternative approaches consider logic elements that are reconfigurable at run-time to overcome the rigid architecture of the present hardware systems. Implementation of parallel algorithms on such 'chameleon' processors has the potential to yield a dramatic increase of computational speed, competitive with that of supercomputers. Owing to their functional flexibility, 'chameleon' processors can be readily optimized with respect to any computer application. In conventional microprocessors, information must be transferred to a memory to prevent it from getting lost, because electrically processed information is volatile. Therefore the computational performance can be improved if the logic gate is additionally capable of storing the output. Here we describe a simple hardware concept for a programmable logic element that is based on a single magnetic random access memory (MRAM) cell. It combines the inherent advantage of a non-volatile output with flexible functionality which can be selected at run-time to operate as an AND, OR, NAND or NOR gate. |
doi_str_mv | 10.1038/nature02014 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_75727286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A187805641</galeid><sourcerecordid>A187805641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c568t-eeff91d06a8e8e3aaeac44b30f9a9d1564ff634372c8d2ed2b8de84b91a35c3f3</originalsourceid><addsrcrecordid>eNqN0tuL1DAUB-Agiju7-uS7jMIKIl1za5s--LAsXhYWFC_P4TQ9qVnadDZJvfz3Rjo4M7Kg5CHh8OWXC4eQR4yeMSrUSw9pDkg5ZfIOWTFZV4WsVH2XrCjlqqBKVEfkOMZrSmnJanmfHDFZciFFsyKvPoSpDzCO0A64NtO4mZPz_fq7S1_XsI55nesj9B7TFDC6mNw3XOOAI_r0gNyzMER8uJ1PyJc3rz9fvCuu3r-9vDi_KkxZqVQgWtuwjlagUKEAQDBStoLaBpqOlZW0tsr3qblRHceOt6pDJduGgSiNsOKEPFtyN2G6mTEmPbpocBjA4zRHXZc1r7mq_gl53YhK0PJ_IJeMqwyf_gWvpzn4_FrNqSypWlCxoB4G1M7bKQUwPXoMMEwercvlc6ZqRfNj2S70wJuNu9H76OwWlEeHozO3pj4_2JBNwh-phzlGffnp46F9sVgTphgDWr0JboTwUzOqf7eV3murrB9vP2FuR-x2dttHGZxuAUQDgw3gjYs7VzLRMEmze7K4Jf0P2D_sF2-H3s0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204508128</pqid></control><display><type>article</type><title>Programmable computing with a single magnetoresistive element</title><source>Nature Journals Online</source><source>Alma/SFX Local Collection</source><creator>Koch, R ; Ney, A ; Pampuch, C ; Ploog, K. H</creator><creatorcontrib>Koch, R ; Ney, A ; Pampuch, C ; Ploog, K. H</creatorcontrib><description>The development of transistor-based integrated circuits for modern computing is a story of great success. However, the proved concept for enhancing computational power by continuous miniaturization is approaching its fundamental limits. Alternative approaches consider logic elements that are reconfigurable at run-time to overcome the rigid architecture of the present hardware systems. Implementation of parallel algorithms on such 'chameleon' processors has the potential to yield a dramatic increase of computational speed, competitive with that of supercomputers. Owing to their functional flexibility, 'chameleon' processors can be readily optimized with respect to any computer application. In conventional microprocessors, information must be transferred to a memory to prevent it from getting lost, because electrically processed information is volatile. Therefore the computational performance can be improved if the logic gate is additionally capable of storing the output. Here we describe a simple hardware concept for a programmable logic element that is based on a single magnetic random access memory (MRAM) cell. It combines the inherent advantage of a non-volatile output with flexible functionality which can be selected at run-time to operate as an AND, OR, NAND or NOR gate.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature02014</identifier><identifier>PMID: 14523439</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing</publisher><subject>Applied sciences ; Circuit properties ; Computer programming ; Digital circuits ; Electric, optical and optoelectronic circuits ; Electronic circuits ; Electronics ; Exact sciences and technology ; Integrated circuits ; Magnetic and optical mass memories ; Magnetoelectric, magnetostrictive, magnetoacoustic, magnetooptic and magnetothermal devices. Spintronics ; Microprocessors ; Random access memory ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Storage and reproduction of information</subject><ispartof>Nature, 2003-10, Vol.425 (6957), p.485-487</ispartof><rights>2004 INIST-CNRS</rights><rights>COPYRIGHT 2003 Nature Publishing Group</rights><rights>Copyright Macmillan Journals Ltd. Oct 2, 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c568t-eeff91d06a8e8e3aaeac44b30f9a9d1564ff634372c8d2ed2b8de84b91a35c3f3</citedby><cites>FETCH-LOGICAL-c568t-eeff91d06a8e8e3aaeac44b30f9a9d1564ff634372c8d2ed2b8de84b91a35c3f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,2729,27931,27932</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15139140$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14523439$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Koch, R</creatorcontrib><creatorcontrib>Ney, A</creatorcontrib><creatorcontrib>Pampuch, C</creatorcontrib><creatorcontrib>Ploog, K. H</creatorcontrib><title>Programmable computing with a single magnetoresistive element</title><title>Nature</title><addtitle>Nature</addtitle><description>The development of transistor-based integrated circuits for modern computing is a story of great success. However, the proved concept for enhancing computational power by continuous miniaturization is approaching its fundamental limits. Alternative approaches consider logic elements that are reconfigurable at run-time to overcome the rigid architecture of the present hardware systems. Implementation of parallel algorithms on such 'chameleon' processors has the potential to yield a dramatic increase of computational speed, competitive with that of supercomputers. Owing to their functional flexibility, 'chameleon' processors can be readily optimized with respect to any computer application. In conventional microprocessors, information must be transferred to a memory to prevent it from getting lost, because electrically processed information is volatile. Therefore the computational performance can be improved if the logic gate is additionally capable of storing the output. Here we describe a simple hardware concept for a programmable logic element that is based on a single magnetic random access memory (MRAM) cell. It combines the inherent advantage of a non-volatile output with flexible functionality which can be selected at run-time to operate as an AND, OR, NAND or NOR gate.</description><subject>Applied sciences</subject><subject>Circuit properties</subject><subject>Computer programming</subject><subject>Digital circuits</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronic circuits</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Integrated circuits</subject><subject>Magnetic and optical mass memories</subject><subject>Magnetoelectric, magnetostrictive, magnetoacoustic, magnetooptic and magnetothermal devices. Spintronics</subject><subject>Microprocessors</subject><subject>Random access memory</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Storage and reproduction of information</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqN0tuL1DAUB-Agiju7-uS7jMIKIl1za5s--LAsXhYWFC_P4TQ9qVnadDZJvfz3Rjo4M7Kg5CHh8OWXC4eQR4yeMSrUSw9pDkg5ZfIOWTFZV4WsVH2XrCjlqqBKVEfkOMZrSmnJanmfHDFZciFFsyKvPoSpDzCO0A64NtO4mZPz_fq7S1_XsI55nesj9B7TFDC6mNw3XOOAI_r0gNyzMER8uJ1PyJc3rz9fvCuu3r-9vDi_KkxZqVQgWtuwjlagUKEAQDBStoLaBpqOlZW0tsr3qblRHceOt6pDJduGgSiNsOKEPFtyN2G6mTEmPbpocBjA4zRHXZc1r7mq_gl53YhK0PJ_IJeMqwyf_gWvpzn4_FrNqSypWlCxoB4G1M7bKQUwPXoMMEwercvlc6ZqRfNj2S70wJuNu9H76OwWlEeHozO3pj4_2JBNwh-phzlGffnp46F9sVgTphgDWr0JboTwUzOqf7eV3murrB9vP2FuR-x2dttHGZxuAUQDgw3gjYs7VzLRMEmze7K4Jf0P2D_sF2-H3s0</recordid><startdate>20031002</startdate><enddate>20031002</enddate><creator>Koch, R</creator><creator>Ney, A</creator><creator>Pampuch, C</creator><creator>Ploog, K. H</creator><general>Nature Publishing</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7SC</scope><scope>7SP</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope><scope>7X8</scope></search><sort><creationdate>20031002</creationdate><title>Programmable computing with a single magnetoresistive element</title><author>Koch, R ; Ney, A ; Pampuch, C ; Ploog, K. H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c568t-eeff91d06a8e8e3aaeac44b30f9a9d1564ff634372c8d2ed2b8de84b91a35c3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Circuit properties</topic><topic>Computer programming</topic><topic>Digital circuits</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronic circuits</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Integrated circuits</topic><topic>Magnetic and optical mass memories</topic><topic>Magnetoelectric, magnetostrictive, magnetoacoustic, magnetooptic and magnetothermal devices. Spintronics</topic><topic>Microprocessors</topic><topic>Random access memory</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Storage and reproduction of information</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koch, R</creatorcontrib><creatorcontrib>Ney, A</creatorcontrib><creatorcontrib>Pampuch, C</creatorcontrib><creatorcontrib>Ploog, K. H</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><collection>MEDLINE - Academic</collection><jtitle>Nature</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koch, R</au><au>Ney, A</au><au>Pampuch, C</au><au>Ploog, K. H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Programmable computing with a single magnetoresistive element</atitle><jtitle>Nature</jtitle><addtitle>Nature</addtitle><date>2003-10-02</date><risdate>2003</risdate><volume>425</volume><issue>6957</issue><spage>485</spage><epage>487</epage><pages>485-487</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>The development of transistor-based integrated circuits for modern computing is a story of great success. However, the proved concept for enhancing computational power by continuous miniaturization is approaching its fundamental limits. Alternative approaches consider logic elements that are reconfigurable at run-time to overcome the rigid architecture of the present hardware systems. Implementation of parallel algorithms on such 'chameleon' processors has the potential to yield a dramatic increase of computational speed, competitive with that of supercomputers. Owing to their functional flexibility, 'chameleon' processors can be readily optimized with respect to any computer application. In conventional microprocessors, information must be transferred to a memory to prevent it from getting lost, because electrically processed information is volatile. Therefore the computational performance can be improved if the logic gate is additionally capable of storing the output. Here we describe a simple hardware concept for a programmable logic element that is based on a single magnetic random access memory (MRAM) cell. It combines the inherent advantage of a non-volatile output with flexible functionality which can be selected at run-time to operate as an AND, OR, NAND or NOR gate.</abstract><cop>London</cop><pub>Nature Publishing</pub><pmid>14523439</pmid><doi>10.1038/nature02014</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature, 2003-10, Vol.425 (6957), p.485-487 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_75727286 |
source | Nature Journals Online; Alma/SFX Local Collection |
subjects | Applied sciences Circuit properties Computer programming Digital circuits Electric, optical and optoelectronic circuits Electronic circuits Electronics Exact sciences and technology Integrated circuits Magnetic and optical mass memories Magnetoelectric, magnetostrictive, magnetoacoustic, magnetooptic and magnetothermal devices. Spintronics Microprocessors Random access memory Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Storage and reproduction of information |
title | Programmable computing with a single magnetoresistive element |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T03%3A38%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Programmable%20computing%20with%20a%20single%20magnetoresistive%20element&rft.jtitle=Nature&rft.au=Koch,%20R&rft.date=2003-10-02&rft.volume=425&rft.issue=6957&rft.spage=485&rft.epage=487&rft.pages=485-487&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature02014&rft_dat=%3Cgale_proqu%3EA187805641%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204508128&rft_id=info:pmid/14523439&rft_galeid=A187805641&rfr_iscdi=true |