Cytoskeletal remodeling of the airway smooth muscle cell: a mechanism for adaptation to mechanical forces in the lung

Airway smooth muscle is continuously subjected to mechanical forces caused by changes in lung volume during breathing. These mechanical oscillations have profound effects on airway smooth muscle contractility both in vivo and in vitro. Alterations in airway smooth muscle properties in response to me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Respiratory physiology & neurobiology 2003-09, Vol.137 (2), p.151-168
Hauptverfasser: Gunst, Susan J., Tang, Dale D., Opazo Saez, Anabelle
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 168
container_issue 2
container_start_page 151
container_title Respiratory physiology & neurobiology
container_volume 137
creator Gunst, Susan J.
Tang, Dale D.
Opazo Saez, Anabelle
description Airway smooth muscle is continuously subjected to mechanical forces caused by changes in lung volume during breathing. These mechanical oscillations have profound effects on airway smooth muscle contractility both in vivo and in vitro. Alterations in airway smooth muscle properties in response to mechanical forces may result from adaptive changes in the organization of the actin cytoskeleton. Recent advances suggest that in airway smooth muscle, two cytosolic signaling proteins that associate with focal adhesion complexes, focal adhesion kinase (FAK) and paxillin, are involved in transducing external mechanical signals. FAK and paxillin regulate changes in the organization of the actin cytoskeleton and the activation of contractile proteins. Actin is in a dynamic state in airway smooth muscle and undergoes polymerization and depolymerization during the contraction–relaxation cycle. The organization of the cytoskeletal proteins, vinculin, talin, and α-actinin, which mediate linkages between actin filaments and transmembrane integrins, is also regulated by contractile stimulation in airway smooth muscle. The fluidity of the cytoskeletal structure of the airway smooth muscle cell may be fundamental to its ability to adapt and respond to the mechanical forces imposed on it in the lung during breathing.
doi_str_mv 10.1016/S1569-9048(03)00144-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_75723472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1569904803001447</els_id><sourcerecordid>75723472</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-8e54bc7d812973e8c08e7033071ae3346d58cfe6f29e1bb9758207e433f67e0d3</originalsourceid><addsrcrecordid>eNqFkE1PAyEQhonRWK3-BA0no4dVKOzCejGm8Stp4kE9E8rOtujuUoHV9N9LP4xHDwSSeead4UHohJJLSmhx9ULzosxKwuU5YReEUM4zsYMOqBQyozktd9P7FxmgwxDeEySoYPtoQHlOCzFiB6gfL6MLH9BA1A320LoKGtvNsKtxnAPW1n_rJQ6tc3GO2z6YBrCBprnGGrdg5rqzocW181hXehF1tK7D0f3WTEpNRQMB226d2PTd7Ajt1boJcLy9h-jt_u51_JhNnh-exreTzHBRxkxCzqdGVJKOSsFAGiJBEMaIoBoY40WVS1NDUY9KoNNpKXI5IgI4Y3UhgFRsiM42uQvvPnsIUbU2rLbXHbg-KJEnCTydIco3oPEuBA-1Wnjbar9UlKiVb7X2rVYyFWFq7VuJ1He6HdBPW6j-uraCE3CzASB988uCV8FY6AxU1oOJqnL2nxE_97yQxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>75723472</pqid></control><display><type>article</type><title>Cytoskeletal remodeling of the airway smooth muscle cell: a mechanism for adaptation to mechanical forces in the lung</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Gunst, Susan J. ; Tang, Dale D. ; Opazo Saez, Anabelle</creator><creatorcontrib>Gunst, Susan J. ; Tang, Dale D. ; Opazo Saez, Anabelle</creatorcontrib><description>Airway smooth muscle is continuously subjected to mechanical forces caused by changes in lung volume during breathing. These mechanical oscillations have profound effects on airway smooth muscle contractility both in vivo and in vitro. Alterations in airway smooth muscle properties in response to mechanical forces may result from adaptive changes in the organization of the actin cytoskeleton. Recent advances suggest that in airway smooth muscle, two cytosolic signaling proteins that associate with focal adhesion complexes, focal adhesion kinase (FAK) and paxillin, are involved in transducing external mechanical signals. FAK and paxillin regulate changes in the organization of the actin cytoskeleton and the activation of contractile proteins. Actin is in a dynamic state in airway smooth muscle and undergoes polymerization and depolymerization during the contraction–relaxation cycle. The organization of the cytoskeletal proteins, vinculin, talin, and α-actinin, which mediate linkages between actin filaments and transmembrane integrins, is also regulated by contractile stimulation in airway smooth muscle. The fluidity of the cytoskeletal structure of the airway smooth muscle cell may be fundamental to its ability to adapt and respond to the mechanical forces imposed on it in the lung during breathing.</description><identifier>ISSN: 1569-9048</identifier><identifier>EISSN: 1878-1519</identifier><identifier>DOI: 10.1016/S1569-9048(03)00144-7</identifier><identifier>PMID: 14516723</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Actins - metabolism ; Adaptation, Physiological ; Adaptive changes ; Adhesion ; Airway ; Animals ; Cytoskeletal signaling ; Cytoskeleton - metabolism ; Enzyme ; FAK ; Focal ; Focal adhesion kinase ; Humans ; Muscle ; Muscle Contraction - physiology ; Myocytes, Smooth Muscle - metabolism ; Paxillin ; Proteins ; Pulmonary Ventilation - physiology ; Respiratory Physiological Phenomena ; Signal Transduction ; Smooth ; Smooth muscle ; Stress, Mechanical ; Trachea - physiology</subject><ispartof>Respiratory physiology &amp; neurobiology, 2003-09, Vol.137 (2), p.151-168</ispartof><rights>2003 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-8e54bc7d812973e8c08e7033071ae3346d58cfe6f29e1bb9758207e433f67e0d3</citedby><cites>FETCH-LOGICAL-c479t-8e54bc7d812973e8c08e7033071ae3346d58cfe6f29e1bb9758207e433f67e0d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1569904803001447$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14516723$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gunst, Susan J.</creatorcontrib><creatorcontrib>Tang, Dale D.</creatorcontrib><creatorcontrib>Opazo Saez, Anabelle</creatorcontrib><title>Cytoskeletal remodeling of the airway smooth muscle cell: a mechanism for adaptation to mechanical forces in the lung</title><title>Respiratory physiology &amp; neurobiology</title><addtitle>Respir Physiol Neurobiol</addtitle><description>Airway smooth muscle is continuously subjected to mechanical forces caused by changes in lung volume during breathing. These mechanical oscillations have profound effects on airway smooth muscle contractility both in vivo and in vitro. Alterations in airway smooth muscle properties in response to mechanical forces may result from adaptive changes in the organization of the actin cytoskeleton. Recent advances suggest that in airway smooth muscle, two cytosolic signaling proteins that associate with focal adhesion complexes, focal adhesion kinase (FAK) and paxillin, are involved in transducing external mechanical signals. FAK and paxillin regulate changes in the organization of the actin cytoskeleton and the activation of contractile proteins. Actin is in a dynamic state in airway smooth muscle and undergoes polymerization and depolymerization during the contraction–relaxation cycle. The organization of the cytoskeletal proteins, vinculin, talin, and α-actinin, which mediate linkages between actin filaments and transmembrane integrins, is also regulated by contractile stimulation in airway smooth muscle. The fluidity of the cytoskeletal structure of the airway smooth muscle cell may be fundamental to its ability to adapt and respond to the mechanical forces imposed on it in the lung during breathing.</description><subject>Actins - metabolism</subject><subject>Adaptation, Physiological</subject><subject>Adaptive changes</subject><subject>Adhesion</subject><subject>Airway</subject><subject>Animals</subject><subject>Cytoskeletal signaling</subject><subject>Cytoskeleton - metabolism</subject><subject>Enzyme</subject><subject>FAK</subject><subject>Focal</subject><subject>Focal adhesion kinase</subject><subject>Humans</subject><subject>Muscle</subject><subject>Muscle Contraction - physiology</subject><subject>Myocytes, Smooth Muscle - metabolism</subject><subject>Paxillin</subject><subject>Proteins</subject><subject>Pulmonary Ventilation - physiology</subject><subject>Respiratory Physiological Phenomena</subject><subject>Signal Transduction</subject><subject>Smooth</subject><subject>Smooth muscle</subject><subject>Stress, Mechanical</subject><subject>Trachea - physiology</subject><issn>1569-9048</issn><issn>1878-1519</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1PAyEQhonRWK3-BA0no4dVKOzCejGm8Stp4kE9E8rOtujuUoHV9N9LP4xHDwSSeead4UHohJJLSmhx9ULzosxKwuU5YReEUM4zsYMOqBQyozktd9P7FxmgwxDeEySoYPtoQHlOCzFiB6gfL6MLH9BA1A320LoKGtvNsKtxnAPW1n_rJQ6tc3GO2z6YBrCBprnGGrdg5rqzocW181hXehF1tK7D0f3WTEpNRQMB226d2PTd7Ajt1boJcLy9h-jt_u51_JhNnh-exreTzHBRxkxCzqdGVJKOSsFAGiJBEMaIoBoY40WVS1NDUY9KoNNpKXI5IgI4Y3UhgFRsiM42uQvvPnsIUbU2rLbXHbg-KJEnCTydIco3oPEuBA-1Wnjbar9UlKiVb7X2rVYyFWFq7VuJ1He6HdBPW6j-uraCE3CzASB988uCV8FY6AxU1oOJqnL2nxE_97yQxA</recordid><startdate>20030916</startdate><enddate>20030916</enddate><creator>Gunst, Susan J.</creator><creator>Tang, Dale D.</creator><creator>Opazo Saez, Anabelle</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20030916</creationdate><title>Cytoskeletal remodeling of the airway smooth muscle cell: a mechanism for adaptation to mechanical forces in the lung</title><author>Gunst, Susan J. ; Tang, Dale D. ; Opazo Saez, Anabelle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-8e54bc7d812973e8c08e7033071ae3346d58cfe6f29e1bb9758207e433f67e0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Actins - metabolism</topic><topic>Adaptation, Physiological</topic><topic>Adaptive changes</topic><topic>Adhesion</topic><topic>Airway</topic><topic>Animals</topic><topic>Cytoskeletal signaling</topic><topic>Cytoskeleton - metabolism</topic><topic>Enzyme</topic><topic>FAK</topic><topic>Focal</topic><topic>Focal adhesion kinase</topic><topic>Humans</topic><topic>Muscle</topic><topic>Muscle Contraction - physiology</topic><topic>Myocytes, Smooth Muscle - metabolism</topic><topic>Paxillin</topic><topic>Proteins</topic><topic>Pulmonary Ventilation - physiology</topic><topic>Respiratory Physiological Phenomena</topic><topic>Signal Transduction</topic><topic>Smooth</topic><topic>Smooth muscle</topic><topic>Stress, Mechanical</topic><topic>Trachea - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gunst, Susan J.</creatorcontrib><creatorcontrib>Tang, Dale D.</creatorcontrib><creatorcontrib>Opazo Saez, Anabelle</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Respiratory physiology &amp; neurobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gunst, Susan J.</au><au>Tang, Dale D.</au><au>Opazo Saez, Anabelle</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cytoskeletal remodeling of the airway smooth muscle cell: a mechanism for adaptation to mechanical forces in the lung</atitle><jtitle>Respiratory physiology &amp; neurobiology</jtitle><addtitle>Respir Physiol Neurobiol</addtitle><date>2003-09-16</date><risdate>2003</risdate><volume>137</volume><issue>2</issue><spage>151</spage><epage>168</epage><pages>151-168</pages><issn>1569-9048</issn><eissn>1878-1519</eissn><abstract>Airway smooth muscle is continuously subjected to mechanical forces caused by changes in lung volume during breathing. These mechanical oscillations have profound effects on airway smooth muscle contractility both in vivo and in vitro. Alterations in airway smooth muscle properties in response to mechanical forces may result from adaptive changes in the organization of the actin cytoskeleton. Recent advances suggest that in airway smooth muscle, two cytosolic signaling proteins that associate with focal adhesion complexes, focal adhesion kinase (FAK) and paxillin, are involved in transducing external mechanical signals. FAK and paxillin regulate changes in the organization of the actin cytoskeleton and the activation of contractile proteins. Actin is in a dynamic state in airway smooth muscle and undergoes polymerization and depolymerization during the contraction–relaxation cycle. The organization of the cytoskeletal proteins, vinculin, talin, and α-actinin, which mediate linkages between actin filaments and transmembrane integrins, is also regulated by contractile stimulation in airway smooth muscle. The fluidity of the cytoskeletal structure of the airway smooth muscle cell may be fundamental to its ability to adapt and respond to the mechanical forces imposed on it in the lung during breathing.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>14516723</pmid><doi>10.1016/S1569-9048(03)00144-7</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1569-9048
ispartof Respiratory physiology & neurobiology, 2003-09, Vol.137 (2), p.151-168
issn 1569-9048
1878-1519
language eng
recordid cdi_proquest_miscellaneous_75723472
source MEDLINE; Elsevier ScienceDirect Journals
subjects Actins - metabolism
Adaptation, Physiological
Adaptive changes
Adhesion
Airway
Animals
Cytoskeletal signaling
Cytoskeleton - metabolism
Enzyme
FAK
Focal
Focal adhesion kinase
Humans
Muscle
Muscle Contraction - physiology
Myocytes, Smooth Muscle - metabolism
Paxillin
Proteins
Pulmonary Ventilation - physiology
Respiratory Physiological Phenomena
Signal Transduction
Smooth
Smooth muscle
Stress, Mechanical
Trachea - physiology
title Cytoskeletal remodeling of the airway smooth muscle cell: a mechanism for adaptation to mechanical forces in the lung
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T15%3A57%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cytoskeletal%20remodeling%20of%20the%20airway%20smooth%20muscle%20cell:%20a%20mechanism%20for%20adaptation%20to%20mechanical%20forces%20in%20the%20lung&rft.jtitle=Respiratory%20physiology%20&%20neurobiology&rft.au=Gunst,%20Susan%20J.&rft.date=2003-09-16&rft.volume=137&rft.issue=2&rft.spage=151&rft.epage=168&rft.pages=151-168&rft.issn=1569-9048&rft.eissn=1878-1519&rft_id=info:doi/10.1016/S1569-9048(03)00144-7&rft_dat=%3Cproquest_cross%3E75723472%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=75723472&rft_id=info:pmid/14516723&rft_els_id=S1569904803001447&rfr_iscdi=true