Tissue engineered bone: Measurement of nutrient transport in three-dimensional matrices
The classic paradigm for in vitro tissue engineering of bone involves the isolation and culture of donor osteoblasts or osteoprogenitor cells within three‐dimensional (3D) scaffold biomaterials under conditions that support tissue growth and mineralized osteoid formation. Our studies focus on the de...
Gespeichert in:
Veröffentlicht in: | Journal of biomedical materials research 2003-10, Vol.67A (1), p.357-367 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 367 |
---|---|
container_issue | 1 |
container_start_page | 357 |
container_title | Journal of biomedical materials research |
container_volume | 67A |
creator | Botchwey, Edward A. Dupree, Melissa A. Pollack, Solomon R. Levine, Elliot M. Laurencin, Cato T. |
description | The classic paradigm for in vitro tissue engineering of bone involves the isolation and culture of donor osteoblasts or osteoprogenitor cells within three‐dimensional (3D) scaffold biomaterials under conditions that support tissue growth and mineralized osteoid formation. Our studies focus on the development and utilization of new dynamic culture technologies to provide adequate nutrient flux within 3D scaffolds to support ongoing tissue formation. In this study, we have developed a basic one‐dimensional (1D) model to characterize the efficiency of passive nutrient diffusion and transport flux to bone cells within 3D scaffolds under static and dynamic culture conditions. Internal fluid perfusion within modeled scaffolds increased rapidly with increasing pore volume and pore diameter to a maximum of approximately 1% of external fluid flow. In contrast, internal perfusion decreased significantly with increasing pore channel tortuosity. Calculations of associated nutrient flux indicate that static 3D culture and some inappropriately designed dynamic culture environments lead to regions of insufficient nutrient concentration to maintain cell viability, and can result in steep nutrient concentration gradients within the modeled constructs. These quantitative studies provide a basis for development of new dynamic culture methodologies to overcome the limitations of passive nutrient diffusion in 3D cell‐scaffold composite systems proposed for in vitro tissue engineering of bone. © 2003 Wiley Periodicals, Inc. J Biomed Mater Res 67A: 357–367, 2003 |
doi_str_mv | 10.1002/jbm.a.10111 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_75720518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>75720518</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4921-18e130ab56a366aecbfde46676d0ee0b1b6e165781059deb3a37d26a46b715fd3</originalsourceid><addsrcrecordid>eNqF0E1T1TAUBuAMIyOIrtw73ejGKeY0X607RL3gXGABCLtM0p5qsE2vSTvKvyflXmGHq7yL55yTeQl5DXQfKC0-3Nh-36QIAFtkF4Qocl5J8WzOvMpZUckd8iLGm4QlFcVzsgNcgCoruUuuLlyME2bofziPGLDJ7ODxY3aCJk4Be_RjNrSZn8bg5jwG4-NqCGPmfDb-DIh545KKbvCmy3qTXI3xJdluTRfx1ebdI5dfv1wcHuXLs8Xx4cEyr3lVQA4lAqPGCmmYlAZr2zbIpVSyoYjUgpUIUqgSqKgatMww1RTScGkViLZhe-Tdeu8qDL8njKPuXayx64zHYYpaCVVQAeV_IZQVZ0xAgu_XsA5DjAFbvQquN-FWA9Vz4ToVro2-LzzpN5u1k-2xebSbhhN4uwEm1qZrU321i49u_luhZgdr98d1ePvUTf3t08m_4_l6xsUR_z7MmPBLS8WU0FenC734fH3Ov19zvWR30N-oRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18943351</pqid></control><display><type>article</type><title>Tissue engineered bone: Measurement of nutrient transport in three-dimensional matrices</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Botchwey, Edward A. ; Dupree, Melissa A. ; Pollack, Solomon R. ; Levine, Elliot M. ; Laurencin, Cato T.</creator><creatorcontrib>Botchwey, Edward A. ; Dupree, Melissa A. ; Pollack, Solomon R. ; Levine, Elliot M. ; Laurencin, Cato T.</creatorcontrib><description>The classic paradigm for in vitro tissue engineering of bone involves the isolation and culture of donor osteoblasts or osteoprogenitor cells within three‐dimensional (3D) scaffold biomaterials under conditions that support tissue growth and mineralized osteoid formation. Our studies focus on the development and utilization of new dynamic culture technologies to provide adequate nutrient flux within 3D scaffolds to support ongoing tissue formation. In this study, we have developed a basic one‐dimensional (1D) model to characterize the efficiency of passive nutrient diffusion and transport flux to bone cells within 3D scaffolds under static and dynamic culture conditions. Internal fluid perfusion within modeled scaffolds increased rapidly with increasing pore volume and pore diameter to a maximum of approximately 1% of external fluid flow. In contrast, internal perfusion decreased significantly with increasing pore channel tortuosity. Calculations of associated nutrient flux indicate that static 3D culture and some inappropriately designed dynamic culture environments lead to regions of insufficient nutrient concentration to maintain cell viability, and can result in steep nutrient concentration gradients within the modeled constructs. These quantitative studies provide a basis for development of new dynamic culture methodologies to overcome the limitations of passive nutrient diffusion in 3D cell‐scaffold composite systems proposed for in vitro tissue engineering of bone. © 2003 Wiley Periodicals, Inc. J Biomed Mater Res 67A: 357–367, 2003</description><identifier>ISSN: 1549-3296</identifier><identifier>ISSN: 0021-9304</identifier><identifier>EISSN: 1552-4965</identifier><identifier>EISSN: 1097-4636</identifier><identifier>DOI: 10.1002/jbm.a.10111</identifier><identifier>PMID: 14517896</identifier><identifier>CODEN: JBMRBG</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Alkaline Phosphatase - metabolism ; Biological and medical sciences ; bone ; Bone Substitutes - metabolism ; Data Interpretation, Statistical ; Diffusion ; flow ; Glucose - metabolism ; Humans ; Medical sciences ; Osteoblasts - metabolism ; Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects) ; scaffold ; Technology. Biomaterials. Equipments. Material. Instrumentation ; Tissue Engineering</subject><ispartof>Journal of biomedical materials research, 2003-10, Vol.67A (1), p.357-367</ispartof><rights>Copyright © 2003 Wiley Periodicals, Inc.</rights><rights>2004 INIST-CNRS</rights><rights>Copyright 2003 Wiley Periodicals, Inc. J Biomed Mater Res 67A: 357-367, 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4921-18e130ab56a366aecbfde46676d0ee0b1b6e165781059deb3a37d26a46b715fd3</citedby><cites>FETCH-LOGICAL-c4921-18e130ab56a366aecbfde46676d0ee0b1b6e165781059deb3a37d26a46b715fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.a.10111$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.a.10111$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15183276$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14517896$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Botchwey, Edward A.</creatorcontrib><creatorcontrib>Dupree, Melissa A.</creatorcontrib><creatorcontrib>Pollack, Solomon R.</creatorcontrib><creatorcontrib>Levine, Elliot M.</creatorcontrib><creatorcontrib>Laurencin, Cato T.</creatorcontrib><title>Tissue engineered bone: Measurement of nutrient transport in three-dimensional matrices</title><title>Journal of biomedical materials research</title><addtitle>J. Biomed. Mater. Res</addtitle><description>The classic paradigm for in vitro tissue engineering of bone involves the isolation and culture of donor osteoblasts or osteoprogenitor cells within three‐dimensional (3D) scaffold biomaterials under conditions that support tissue growth and mineralized osteoid formation. Our studies focus on the development and utilization of new dynamic culture technologies to provide adequate nutrient flux within 3D scaffolds to support ongoing tissue formation. In this study, we have developed a basic one‐dimensional (1D) model to characterize the efficiency of passive nutrient diffusion and transport flux to bone cells within 3D scaffolds under static and dynamic culture conditions. Internal fluid perfusion within modeled scaffolds increased rapidly with increasing pore volume and pore diameter to a maximum of approximately 1% of external fluid flow. In contrast, internal perfusion decreased significantly with increasing pore channel tortuosity. Calculations of associated nutrient flux indicate that static 3D culture and some inappropriately designed dynamic culture environments lead to regions of insufficient nutrient concentration to maintain cell viability, and can result in steep nutrient concentration gradients within the modeled constructs. These quantitative studies provide a basis for development of new dynamic culture methodologies to overcome the limitations of passive nutrient diffusion in 3D cell‐scaffold composite systems proposed for in vitro tissue engineering of bone. © 2003 Wiley Periodicals, Inc. J Biomed Mater Res 67A: 357–367, 2003</description><subject>Alkaline Phosphatase - metabolism</subject><subject>Biological and medical sciences</subject><subject>bone</subject><subject>Bone Substitutes - metabolism</subject><subject>Data Interpretation, Statistical</subject><subject>Diffusion</subject><subject>flow</subject><subject>Glucose - metabolism</subject><subject>Humans</subject><subject>Medical sciences</subject><subject>Osteoblasts - metabolism</subject><subject>Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)</subject><subject>scaffold</subject><subject>Technology. Biomaterials. Equipments. Material. Instrumentation</subject><subject>Tissue Engineering</subject><issn>1549-3296</issn><issn>0021-9304</issn><issn>1552-4965</issn><issn>1097-4636</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0E1T1TAUBuAMIyOIrtw73ejGKeY0X607RL3gXGABCLtM0p5qsE2vSTvKvyflXmGHq7yL55yTeQl5DXQfKC0-3Nh-36QIAFtkF4Qocl5J8WzOvMpZUckd8iLGm4QlFcVzsgNcgCoruUuuLlyME2bofziPGLDJ7ODxY3aCJk4Be_RjNrSZn8bg5jwG4-NqCGPmfDb-DIh545KKbvCmy3qTXI3xJdluTRfx1ebdI5dfv1wcHuXLs8Xx4cEyr3lVQA4lAqPGCmmYlAZr2zbIpVSyoYjUgpUIUqgSqKgatMww1RTScGkViLZhe-Tdeu8qDL8njKPuXayx64zHYYpaCVVQAeV_IZQVZ0xAgu_XsA5DjAFbvQquN-FWA9Vz4ToVro2-LzzpN5u1k-2xebSbhhN4uwEm1qZrU321i49u_luhZgdr98d1ePvUTf3t08m_4_l6xsUR_z7MmPBLS8WU0FenC734fH3Ov19zvWR30N-oRw</recordid><startdate>20031001</startdate><enddate>20031001</enddate><creator>Botchwey, Edward A.</creator><creator>Dupree, Melissa A.</creator><creator>Pollack, Solomon R.</creator><creator>Levine, Elliot M.</creator><creator>Laurencin, Cato T.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>John Wiley & Sons</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20031001</creationdate><title>Tissue engineered bone: Measurement of nutrient transport in three-dimensional matrices</title><author>Botchwey, Edward A. ; Dupree, Melissa A. ; Pollack, Solomon R. ; Levine, Elliot M. ; Laurencin, Cato T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4921-18e130ab56a366aecbfde46676d0ee0b1b6e165781059deb3a37d26a46b715fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Alkaline Phosphatase - metabolism</topic><topic>Biological and medical sciences</topic><topic>bone</topic><topic>Bone Substitutes - metabolism</topic><topic>Data Interpretation, Statistical</topic><topic>Diffusion</topic><topic>flow</topic><topic>Glucose - metabolism</topic><topic>Humans</topic><topic>Medical sciences</topic><topic>Osteoblasts - metabolism</topic><topic>Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)</topic><topic>scaffold</topic><topic>Technology. Biomaterials. Equipments. Material. Instrumentation</topic><topic>Tissue Engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Botchwey, Edward A.</creatorcontrib><creatorcontrib>Dupree, Melissa A.</creatorcontrib><creatorcontrib>Pollack, Solomon R.</creatorcontrib><creatorcontrib>Levine, Elliot M.</creatorcontrib><creatorcontrib>Laurencin, Cato T.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Botchwey, Edward A.</au><au>Dupree, Melissa A.</au><au>Pollack, Solomon R.</au><au>Levine, Elliot M.</au><au>Laurencin, Cato T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tissue engineered bone: Measurement of nutrient transport in three-dimensional matrices</atitle><jtitle>Journal of biomedical materials research</jtitle><addtitle>J. Biomed. Mater. Res</addtitle><date>2003-10-01</date><risdate>2003</risdate><volume>67A</volume><issue>1</issue><spage>357</spage><epage>367</epage><pages>357-367</pages><issn>1549-3296</issn><issn>0021-9304</issn><eissn>1552-4965</eissn><eissn>1097-4636</eissn><coden>JBMRBG</coden><abstract>The classic paradigm for in vitro tissue engineering of bone involves the isolation and culture of donor osteoblasts or osteoprogenitor cells within three‐dimensional (3D) scaffold biomaterials under conditions that support tissue growth and mineralized osteoid formation. Our studies focus on the development and utilization of new dynamic culture technologies to provide adequate nutrient flux within 3D scaffolds to support ongoing tissue formation. In this study, we have developed a basic one‐dimensional (1D) model to characterize the efficiency of passive nutrient diffusion and transport flux to bone cells within 3D scaffolds under static and dynamic culture conditions. Internal fluid perfusion within modeled scaffolds increased rapidly with increasing pore volume and pore diameter to a maximum of approximately 1% of external fluid flow. In contrast, internal perfusion decreased significantly with increasing pore channel tortuosity. Calculations of associated nutrient flux indicate that static 3D culture and some inappropriately designed dynamic culture environments lead to regions of insufficient nutrient concentration to maintain cell viability, and can result in steep nutrient concentration gradients within the modeled constructs. These quantitative studies provide a basis for development of new dynamic culture methodologies to overcome the limitations of passive nutrient diffusion in 3D cell‐scaffold composite systems proposed for in vitro tissue engineering of bone. © 2003 Wiley Periodicals, Inc. J Biomed Mater Res 67A: 357–367, 2003</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>14517896</pmid><doi>10.1002/jbm.a.10111</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-3296 |
ispartof | Journal of biomedical materials research, 2003-10, Vol.67A (1), p.357-367 |
issn | 1549-3296 0021-9304 1552-4965 1097-4636 |
language | eng |
recordid | cdi_proquest_miscellaneous_75720518 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Alkaline Phosphatase - metabolism Biological and medical sciences bone Bone Substitutes - metabolism Data Interpretation, Statistical Diffusion flow Glucose - metabolism Humans Medical sciences Osteoblasts - metabolism Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects) scaffold Technology. Biomaterials. Equipments. Material. Instrumentation Tissue Engineering |
title | Tissue engineered bone: Measurement of nutrient transport in three-dimensional matrices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T20%3A52%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tissue%20engineered%20bone:%20Measurement%20of%20nutrient%20transport%20in%20three-dimensional%20matrices&rft.jtitle=Journal%20of%20biomedical%20materials%20research&rft.au=Botchwey,%20Edward%20A.&rft.date=2003-10-01&rft.volume=67A&rft.issue=1&rft.spage=357&rft.epage=367&rft.pages=357-367&rft.issn=1549-3296&rft.eissn=1552-4965&rft.coden=JBMRBG&rft_id=info:doi/10.1002/jbm.a.10111&rft_dat=%3Cproquest_cross%3E75720518%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18943351&rft_id=info:pmid/14517896&rfr_iscdi=true |