Post-transcriptional regulation of the steady-state levels of mitochondrial tRNAs in HeLa cells

In human mitochondrial DNA (mtDNA), the tRNA genes are located in three different transcription units that are transcribed at three different rates. To analyze the regulation of tRNA formation by the three transcription units, we have examined the steady-state levels and metabolic properties of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1993-05, Vol.268 (14), p.10228-10237
Hauptverfasser: King, M.P., Attardi, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10237
container_issue 14
container_start_page 10228
container_title The Journal of biological chemistry
container_volume 268
creator King, M.P.
Attardi, G.
description In human mitochondrial DNA (mtDNA), the tRNA genes are located in three different transcription units that are transcribed at three different rates. To analyze the regulation of tRNA formation by the three transcription units, we have examined the steady-state levels and metabolic properties of the tRNAs of HeLa cell mitochondria. DNA excess hybridization experiments utilizing separated strands of mtDNA and purified tRNA samples from exponential cells long term labeled with [32P]orthophosphate have revealed a steady-state level of 6 x 10(5) tRNA molecules/cell, with three-fourths being encoded in the H-strand and one-fourth in the L-strand. Hybridization of the tRNAs with a panel of M13 clones of human mtDNA containing, in most cases, single tRNA genes and a quantitation of two-dimensional electrophoretic fractionations of the tRNAs have shown that the steady-state levels of tRNA(Phe) and tRNA(Val) are two to three times higher than the average level of the other H-strand-encoded tRNAs and three to four times higher than the average level of the L-strand-encoded tRNAs. Similar experiments carried out with tRNAs isolated from cells labeled with very short pulses of [5-3H]uridine have indicated that the rates of formation of the individual tRNA species are proportional to their steady-state amounts. Therefore, the approximately 25-fold higher rate of transcription of the tRNA(Phe) and tRNA(Val) genes relative to the other H-strand tRNA genes and the 10-16-fold higher rate of transcription of the L-strand tRNA genes relative to the H-strand tRNA genes are not reflected in the steady-state levels or the rates of formation of the corresponding tRNAs. A comparison of the steady-state levels of the individual tRNAs with the corresponding codon usage for protein synthesis, as determined from the DNA sequence and the rates of synthesis of the various polypeptides, has not revealed any significant correlation between the two parameters.
doi_str_mv 10.1016/S0021-9258(18)82194-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_75718645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925818821949</els_id><sourcerecordid>16598617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4779-f14f21dc0aa55d65ced8c2b6c1945452e11866bcc05c99443aef6a8f135a18853</originalsourceid><addsrcrecordid>eNqFkU9r3DAQxUVpSbdpP0LAh1Lag1uNLMnSqYTQJoElKf0DvQmtPM6q2NZG0ibk21fOLktu0UWI-b2Z0XuEnAD9DBTkl1-UMqg1E-ojqE-Kgea1fkEWQFVTNwL-viSLA_KavEnpHy2HazgiR61UjWzZgpgfIeU6RzslF_0m-zDZoYp4sx3s_KhCX-U1Vimj7R7qlG3GasA7HNJcGn0Obh2mLvoiyz-vTlPlp-oCl7ZyOAzpLXnV2yHhu_19TP58__b77KJeXp9fnp0ua8fbVtc98J5B56i1QnRSOOyUYyvpyq8EFwwBlJQr56hwWnPeWOylVT00woJSojkmH3Z9NzHcbjFlM_o0b2AnDNtkWtGWDvx5EKTQSkJbQLEDXQwpRezNJvrRxgcD1MwJmMcEzGyvAWUeEzC66E72A7arEbuDam95qb_f121yduiL9c6nA1bsACmfYGt_s773Ec3KF6txNEyWebyswJgq2NcdVgLBO4_RJOdxKv4VicumC_6Zff8DskKuOQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16598617</pqid></control><display><type>article</type><title>Post-transcriptional regulation of the steady-state levels of mitochondrial tRNAs in HeLa cells</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>King, M.P. ; Attardi, G.</creator><creatorcontrib>King, M.P. ; Attardi, G.</creatorcontrib><description>In human mitochondrial DNA (mtDNA), the tRNA genes are located in three different transcription units that are transcribed at three different rates. To analyze the regulation of tRNA formation by the three transcription units, we have examined the steady-state levels and metabolic properties of the tRNAs of HeLa cell mitochondria. DNA excess hybridization experiments utilizing separated strands of mtDNA and purified tRNA samples from exponential cells long term labeled with [32P]orthophosphate have revealed a steady-state level of 6 x 10(5) tRNA molecules/cell, with three-fourths being encoded in the H-strand and one-fourth in the L-strand. Hybridization of the tRNAs with a panel of M13 clones of human mtDNA containing, in most cases, single tRNA genes and a quantitation of two-dimensional electrophoretic fractionations of the tRNAs have shown that the steady-state levels of tRNA(Phe) and tRNA(Val) are two to three times higher than the average level of the other H-strand-encoded tRNAs and three to four times higher than the average level of the L-strand-encoded tRNAs. Similar experiments carried out with tRNAs isolated from cells labeled with very short pulses of [5-3H]uridine have indicated that the rates of formation of the individual tRNA species are proportional to their steady-state amounts. Therefore, the approximately 25-fold higher rate of transcription of the tRNA(Phe) and tRNA(Val) genes relative to the other H-strand tRNA genes and the 10-16-fold higher rate of transcription of the L-strand tRNA genes relative to the H-strand tRNA genes are not reflected in the steady-state levels or the rates of formation of the corresponding tRNAs. A comparison of the steady-state levels of the individual tRNAs with the corresponding codon usage for protein synthesis, as determined from the DNA sequence and the rates of synthesis of the various polypeptides, has not revealed any significant correlation between the two parameters.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1016/S0021-9258(18)82194-9</identifier><identifier>PMID: 7683672</identifier><identifier>CODEN: JBCHA3</identifier><language>eng</language><publisher>Bethesda, MD: Elsevier Inc</publisher><subject>Analytical, structural and metabolic biochemistry ; Biological and medical sciences ; Cloning, Molecular ; Codon - metabolism ; DNA, Mitochondrial - genetics ; DNA, Mitochondrial - isolation &amp; purification ; Electrophoresis, Gel, Two-Dimensional ; Electrophoresis, Polyacrylamide Gel ; Fundamental and applied biological sciences. Psychology ; HeLa Cells ; Humans ; Kinetics ; Methionine - metabolism ; Mitochondria - metabolism ; Nucleic Acid Hybridization ; Nucleic acids ; Protein Biosynthesis ; Restriction Mapping ; Ribosomes - metabolism ; RNA - genetics ; RNA - isolation &amp; purification ; RNA - metabolism ; RNA Processing, Post-Transcriptional ; RNA, Messenger - metabolism ; RNA, Mitochondrial ; Rna, ribonucleoproteins ; RNA, Transfer - genetics ; RNA, Transfer - isolation &amp; purification ; RNA, Transfer - metabolism ; Time Factors</subject><ispartof>The Journal of biological chemistry, 1993-05, Vol.268 (14), p.10228-10237</ispartof><rights>1993 © 1993 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4779-f14f21dc0aa55d65ced8c2b6c1945452e11866bcc05c99443aef6a8f135a18853</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4771662$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/7683672$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>King, M.P.</creatorcontrib><creatorcontrib>Attardi, G.</creatorcontrib><title>Post-transcriptional regulation of the steady-state levels of mitochondrial tRNAs in HeLa cells</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>In human mitochondrial DNA (mtDNA), the tRNA genes are located in three different transcription units that are transcribed at three different rates. To analyze the regulation of tRNA formation by the three transcription units, we have examined the steady-state levels and metabolic properties of the tRNAs of HeLa cell mitochondria. DNA excess hybridization experiments utilizing separated strands of mtDNA and purified tRNA samples from exponential cells long term labeled with [32P]orthophosphate have revealed a steady-state level of 6 x 10(5) tRNA molecules/cell, with three-fourths being encoded in the H-strand and one-fourth in the L-strand. Hybridization of the tRNAs with a panel of M13 clones of human mtDNA containing, in most cases, single tRNA genes and a quantitation of two-dimensional electrophoretic fractionations of the tRNAs have shown that the steady-state levels of tRNA(Phe) and tRNA(Val) are two to three times higher than the average level of the other H-strand-encoded tRNAs and three to four times higher than the average level of the L-strand-encoded tRNAs. Similar experiments carried out with tRNAs isolated from cells labeled with very short pulses of [5-3H]uridine have indicated that the rates of formation of the individual tRNA species are proportional to their steady-state amounts. Therefore, the approximately 25-fold higher rate of transcription of the tRNA(Phe) and tRNA(Val) genes relative to the other H-strand tRNA genes and the 10-16-fold higher rate of transcription of the L-strand tRNA genes relative to the H-strand tRNA genes are not reflected in the steady-state levels or the rates of formation of the corresponding tRNAs. A comparison of the steady-state levels of the individual tRNAs with the corresponding codon usage for protein synthesis, as determined from the DNA sequence and the rates of synthesis of the various polypeptides, has not revealed any significant correlation between the two parameters.</description><subject>Analytical, structural and metabolic biochemistry</subject><subject>Biological and medical sciences</subject><subject>Cloning, Molecular</subject><subject>Codon - metabolism</subject><subject>DNA, Mitochondrial - genetics</subject><subject>DNA, Mitochondrial - isolation &amp; purification</subject><subject>Electrophoresis, Gel, Two-Dimensional</subject><subject>Electrophoresis, Polyacrylamide Gel</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Kinetics</subject><subject>Methionine - metabolism</subject><subject>Mitochondria - metabolism</subject><subject>Nucleic Acid Hybridization</subject><subject>Nucleic acids</subject><subject>Protein Biosynthesis</subject><subject>Restriction Mapping</subject><subject>Ribosomes - metabolism</subject><subject>RNA - genetics</subject><subject>RNA - isolation &amp; purification</subject><subject>RNA - metabolism</subject><subject>RNA Processing, Post-Transcriptional</subject><subject>RNA, Messenger - metabolism</subject><subject>RNA, Mitochondrial</subject><subject>Rna, ribonucleoproteins</subject><subject>RNA, Transfer - genetics</subject><subject>RNA, Transfer - isolation &amp; purification</subject><subject>RNA, Transfer - metabolism</subject><subject>Time Factors</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU9r3DAQxUVpSbdpP0LAh1Lag1uNLMnSqYTQJoElKf0DvQmtPM6q2NZG0ibk21fOLktu0UWI-b2Z0XuEnAD9DBTkl1-UMqg1E-ojqE-Kgea1fkEWQFVTNwL-viSLA_KavEnpHy2HazgiR61UjWzZgpgfIeU6RzslF_0m-zDZoYp4sx3s_KhCX-U1Vimj7R7qlG3GasA7HNJcGn0Obh2mLvoiyz-vTlPlp-oCl7ZyOAzpLXnV2yHhu_19TP58__b77KJeXp9fnp0ua8fbVtc98J5B56i1QnRSOOyUYyvpyq8EFwwBlJQr56hwWnPeWOylVT00woJSojkmH3Z9NzHcbjFlM_o0b2AnDNtkWtGWDvx5EKTQSkJbQLEDXQwpRezNJvrRxgcD1MwJmMcEzGyvAWUeEzC66E72A7arEbuDam95qb_f121yduiL9c6nA1bsACmfYGt_s773Ec3KF6txNEyWebyswJgq2NcdVgLBO4_RJOdxKv4VicumC_6Zff8DskKuOQ</recordid><startdate>19930515</startdate><enddate>19930515</enddate><creator>King, M.P.</creator><creator>Attardi, G.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>7X8</scope></search><sort><creationdate>19930515</creationdate><title>Post-transcriptional regulation of the steady-state levels of mitochondrial tRNAs in HeLa cells</title><author>King, M.P. ; Attardi, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4779-f14f21dc0aa55d65ced8c2b6c1945452e11866bcc05c99443aef6a8f135a18853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Analytical, structural and metabolic biochemistry</topic><topic>Biological and medical sciences</topic><topic>Cloning, Molecular</topic><topic>Codon - metabolism</topic><topic>DNA, Mitochondrial - genetics</topic><topic>DNA, Mitochondrial - isolation &amp; purification</topic><topic>Electrophoresis, Gel, Two-Dimensional</topic><topic>Electrophoresis, Polyacrylamide Gel</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Kinetics</topic><topic>Methionine - metabolism</topic><topic>Mitochondria - metabolism</topic><topic>Nucleic Acid Hybridization</topic><topic>Nucleic acids</topic><topic>Protein Biosynthesis</topic><topic>Restriction Mapping</topic><topic>Ribosomes - metabolism</topic><topic>RNA - genetics</topic><topic>RNA - isolation &amp; purification</topic><topic>RNA - metabolism</topic><topic>RNA Processing, Post-Transcriptional</topic><topic>RNA, Messenger - metabolism</topic><topic>RNA, Mitochondrial</topic><topic>Rna, ribonucleoproteins</topic><topic>RNA, Transfer - genetics</topic><topic>RNA, Transfer - isolation &amp; purification</topic><topic>RNA, Transfer - metabolism</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>King, M.P.</creatorcontrib><creatorcontrib>Attardi, G.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>King, M.P.</au><au>Attardi, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Post-transcriptional regulation of the steady-state levels of mitochondrial tRNAs in HeLa cells</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>1993-05-15</date><risdate>1993</risdate><volume>268</volume><issue>14</issue><spage>10228</spage><epage>10237</epage><pages>10228-10237</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><coden>JBCHA3</coden><abstract>In human mitochondrial DNA (mtDNA), the tRNA genes are located in three different transcription units that are transcribed at three different rates. To analyze the regulation of tRNA formation by the three transcription units, we have examined the steady-state levels and metabolic properties of the tRNAs of HeLa cell mitochondria. DNA excess hybridization experiments utilizing separated strands of mtDNA and purified tRNA samples from exponential cells long term labeled with [32P]orthophosphate have revealed a steady-state level of 6 x 10(5) tRNA molecules/cell, with three-fourths being encoded in the H-strand and one-fourth in the L-strand. Hybridization of the tRNAs with a panel of M13 clones of human mtDNA containing, in most cases, single tRNA genes and a quantitation of two-dimensional electrophoretic fractionations of the tRNAs have shown that the steady-state levels of tRNA(Phe) and tRNA(Val) are two to three times higher than the average level of the other H-strand-encoded tRNAs and three to four times higher than the average level of the L-strand-encoded tRNAs. Similar experiments carried out with tRNAs isolated from cells labeled with very short pulses of [5-3H]uridine have indicated that the rates of formation of the individual tRNA species are proportional to their steady-state amounts. Therefore, the approximately 25-fold higher rate of transcription of the tRNA(Phe) and tRNA(Val) genes relative to the other H-strand tRNA genes and the 10-16-fold higher rate of transcription of the L-strand tRNA genes relative to the H-strand tRNA genes are not reflected in the steady-state levels or the rates of formation of the corresponding tRNAs. A comparison of the steady-state levels of the individual tRNAs with the corresponding codon usage for protein synthesis, as determined from the DNA sequence and the rates of synthesis of the various polypeptides, has not revealed any significant correlation between the two parameters.</abstract><cop>Bethesda, MD</cop><pub>Elsevier Inc</pub><pmid>7683672</pmid><doi>10.1016/S0021-9258(18)82194-9</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 1993-05, Vol.268 (14), p.10228-10237
issn 0021-9258
1083-351X
language eng
recordid cdi_proquest_miscellaneous_75718645
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Analytical, structural and metabolic biochemistry
Biological and medical sciences
Cloning, Molecular
Codon - metabolism
DNA, Mitochondrial - genetics
DNA, Mitochondrial - isolation & purification
Electrophoresis, Gel, Two-Dimensional
Electrophoresis, Polyacrylamide Gel
Fundamental and applied biological sciences. Psychology
HeLa Cells
Humans
Kinetics
Methionine - metabolism
Mitochondria - metabolism
Nucleic Acid Hybridization
Nucleic acids
Protein Biosynthesis
Restriction Mapping
Ribosomes - metabolism
RNA - genetics
RNA - isolation & purification
RNA - metabolism
RNA Processing, Post-Transcriptional
RNA, Messenger - metabolism
RNA, Mitochondrial
Rna, ribonucleoproteins
RNA, Transfer - genetics
RNA, Transfer - isolation & purification
RNA, Transfer - metabolism
Time Factors
title Post-transcriptional regulation of the steady-state levels of mitochondrial tRNAs in HeLa cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T05%3A08%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Post-transcriptional%20regulation%20of%20the%20steady-state%20levels%20of%20mitochondrial%20tRNAs%20in%20HeLa%20cells&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=King,%20M.P.&rft.date=1993-05-15&rft.volume=268&rft.issue=14&rft.spage=10228&rft.epage=10237&rft.pages=10228-10237&rft.issn=0021-9258&rft.eissn=1083-351X&rft.coden=JBCHA3&rft_id=info:doi/10.1016/S0021-9258(18)82194-9&rft_dat=%3Cproquest_cross%3E16598617%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16598617&rft_id=info:pmid/7683672&rft_els_id=S0021925818821949&rfr_iscdi=true