Release of Non‐Glycosylated Polymeric Immunoglobulin Receptor Protein

Using a recombinant vaccinia virus containing the T7 RNA polymerase, we have established a system for the transient expression of human polymeric immunoglobulin receptor (pIgR) in baby hamster kidney cells, a baby hamster‐derived fibroblastic cell line. This transfection system resulted in the succe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scandinavian journal of immunology 2003-10, Vol.58 (4), p.471-476
Hauptverfasser: Matsumoto, N., Asano, M., Ogura, Y., Takenouchi‐Ohkubo, N., Chihaya, H., Chung‐Hsing, W., Ishikawa, K., Zhu, L., Moro, I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 476
container_issue 4
container_start_page 471
container_title Scandinavian journal of immunology
container_volume 58
creator Matsumoto, N.
Asano, M.
Ogura, Y.
Takenouchi‐Ohkubo, N.
Chihaya, H.
Chung‐Hsing, W.
Ishikawa, K.
Zhu, L.
Moro, I.
description Using a recombinant vaccinia virus containing the T7 RNA polymerase, we have established a system for the transient expression of human polymeric immunoglobulin receptor (pIgR) in baby hamster kidney cells, a baby hamster‐derived fibroblastic cell line. This transfection system resulted in the successful expression of pIgR in these cells, and Western blot analysis showed that human pIgR was expressed as two different molecular weight forms of 92 and 107 kDa. Treatment with endoglycosidase H showed that the difference between these two forms was due to the glycosylation status of the protein. In order to examine the functional role of glycosylation, we treated the transfected cells with tunicamycin, which prevents a core glycosylation step in the endoplasmic reticulum. Non‐glycosylated pIgR was released into the culture medium of the transfected cells, albeit with extremely low efficiency. Taking these results together, we conclude that the glycosylation of pIgR may play a positive role in the efficient transport or release of free pIgR.
doi_str_mv 10.1046/j.1365-3083.2003.01325.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_75711126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>75711126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4895-ce909d31d350a810b060b1bf90f9d0c81f7db0d0dd2493bf7853b2e680b22fb43</originalsourceid><addsrcrecordid>eNqNkcFO3DAQhi1EBQvtK6CIA7ekYztO7AOHCtFlK1QQbc9WHE9QVk68tTcqufUR-ox9kibdFUi9lNOMNN__S_P_hCQUMgp58X6dUV6IlIPkGQPgGVDORPZ0QBbPh0OyAA6QqrwUx-QkxjXMVMmPyDHNBZScsgVZPqDDKmLim-Sz73___LV0Y-3j6Kot2uTeu7HD0NbJquuG3j86bwbX9skD1rjZ-pDcB7_Ftn9L3jSVi_huP0_Jt4_XX69u0tu75erqw21a51KJtEYFynJquYBKUjBQgKGmUdAoC7WkTWkNWLCW5YqbppSCG4aFBMNYY3J-Si52vpvgvw8Yt7prY43OVT36IepSlJRSVvwXpFIVHJiYwPN_wLUfQj89oamSjALLywmSO6gOPsaAjd6EtqvCqCnouRK91nPyek5ez5Xov5Xop0l6tvcfTIf2RbjvYAIud8CP1uH4amP95dNq3vgfV6-aAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198210247</pqid></control><display><type>article</type><title>Release of Non‐Glycosylated Polymeric Immunoglobulin Receptor Protein</title><source>Wiley Free Content</source><source>MEDLINE</source><source>IngentaConnect Free/Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Matsumoto, N. ; Asano, M. ; Ogura, Y. ; Takenouchi‐Ohkubo, N. ; Chihaya, H. ; Chung‐Hsing, W. ; Ishikawa, K. ; Zhu, L. ; Moro, I.</creator><creatorcontrib>Matsumoto, N. ; Asano, M. ; Ogura, Y. ; Takenouchi‐Ohkubo, N. ; Chihaya, H. ; Chung‐Hsing, W. ; Ishikawa, K. ; Zhu, L. ; Moro, I.</creatorcontrib><description>Using a recombinant vaccinia virus containing the T7 RNA polymerase, we have established a system for the transient expression of human polymeric immunoglobulin receptor (pIgR) in baby hamster kidney cells, a baby hamster‐derived fibroblastic cell line. This transfection system resulted in the successful expression of pIgR in these cells, and Western blot analysis showed that human pIgR was expressed as two different molecular weight forms of 92 and 107 kDa. Treatment with endoglycosidase H showed that the difference between these two forms was due to the glycosylation status of the protein. In order to examine the functional role of glycosylation, we treated the transfected cells with tunicamycin, which prevents a core glycosylation step in the endoplasmic reticulum. Non‐glycosylated pIgR was released into the culture medium of the transfected cells, albeit with extremely low efficiency. Taking these results together, we conclude that the glycosylation of pIgR may play a positive role in the efficient transport or release of free pIgR.</description><identifier>ISSN: 0300-9475</identifier><identifier>EISSN: 1365-3083</identifier><identifier>DOI: 10.1046/j.1365-3083.2003.01325.x</identifier><identifier>PMID: 14507312</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>Animals ; Antibodies - analysis ; Antibodies - immunology ; Cricetinae ; endoglycosidase H ; Glycosylation ; immunoglobulin receptors ; Receptors, Polymeric Immunoglobulin - immunology ; Receptors, Polymeric Immunoglobulin - metabolism ; Vaccinia virus</subject><ispartof>Scandinavian journal of immunology, 2003-10, Vol.58 (4), p.471-476</ispartof><rights>Copyright Blackwell Scientific Publications Ltd. Oct 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4895-ce909d31d350a810b060b1bf90f9d0c81f7db0d0dd2493bf7853b2e680b22fb43</citedby><cites>FETCH-LOGICAL-c4895-ce909d31d350a810b060b1bf90f9d0c81f7db0d0dd2493bf7853b2e680b22fb43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1046%2Fj.1365-3083.2003.01325.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1046%2Fj.1365-3083.2003.01325.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14507312$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Matsumoto, N.</creatorcontrib><creatorcontrib>Asano, M.</creatorcontrib><creatorcontrib>Ogura, Y.</creatorcontrib><creatorcontrib>Takenouchi‐Ohkubo, N.</creatorcontrib><creatorcontrib>Chihaya, H.</creatorcontrib><creatorcontrib>Chung‐Hsing, W.</creatorcontrib><creatorcontrib>Ishikawa, K.</creatorcontrib><creatorcontrib>Zhu, L.</creatorcontrib><creatorcontrib>Moro, I.</creatorcontrib><title>Release of Non‐Glycosylated Polymeric Immunoglobulin Receptor Protein</title><title>Scandinavian journal of immunology</title><addtitle>Scand J Immunol</addtitle><description>Using a recombinant vaccinia virus containing the T7 RNA polymerase, we have established a system for the transient expression of human polymeric immunoglobulin receptor (pIgR) in baby hamster kidney cells, a baby hamster‐derived fibroblastic cell line. This transfection system resulted in the successful expression of pIgR in these cells, and Western blot analysis showed that human pIgR was expressed as two different molecular weight forms of 92 and 107 kDa. Treatment with endoglycosidase H showed that the difference between these two forms was due to the glycosylation status of the protein. In order to examine the functional role of glycosylation, we treated the transfected cells with tunicamycin, which prevents a core glycosylation step in the endoplasmic reticulum. Non‐glycosylated pIgR was released into the culture medium of the transfected cells, albeit with extremely low efficiency. Taking these results together, we conclude that the glycosylation of pIgR may play a positive role in the efficient transport or release of free pIgR.</description><subject>Animals</subject><subject>Antibodies - analysis</subject><subject>Antibodies - immunology</subject><subject>Cricetinae</subject><subject>endoglycosidase H</subject><subject>Glycosylation</subject><subject>immunoglobulin receptors</subject><subject>Receptors, Polymeric Immunoglobulin - immunology</subject><subject>Receptors, Polymeric Immunoglobulin - metabolism</subject><subject>Vaccinia virus</subject><issn>0300-9475</issn><issn>1365-3083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcFO3DAQhi1EBQvtK6CIA7ekYztO7AOHCtFlK1QQbc9WHE9QVk68tTcqufUR-ox9kibdFUi9lNOMNN__S_P_hCQUMgp58X6dUV6IlIPkGQPgGVDORPZ0QBbPh0OyAA6QqrwUx-QkxjXMVMmPyDHNBZScsgVZPqDDKmLim-Sz73___LV0Y-3j6Kot2uTeu7HD0NbJquuG3j86bwbX9skD1rjZ-pDcB7_Ftn9L3jSVi_huP0_Jt4_XX69u0tu75erqw21a51KJtEYFynJquYBKUjBQgKGmUdAoC7WkTWkNWLCW5YqbppSCG4aFBMNYY3J-Si52vpvgvw8Yt7prY43OVT36IepSlJRSVvwXpFIVHJiYwPN_wLUfQj89oamSjALLywmSO6gOPsaAjd6EtqvCqCnouRK91nPyek5ez5Xov5Xop0l6tvcfTIf2RbjvYAIud8CP1uH4amP95dNq3vgfV6-aAA</recordid><startdate>200310</startdate><enddate>200310</enddate><creator>Matsumoto, N.</creator><creator>Asano, M.</creator><creator>Ogura, Y.</creator><creator>Takenouchi‐Ohkubo, N.</creator><creator>Chihaya, H.</creator><creator>Chung‐Hsing, W.</creator><creator>Ishikawa, K.</creator><creator>Zhu, L.</creator><creator>Moro, I.</creator><general>Blackwell Science Ltd</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>200310</creationdate><title>Release of Non‐Glycosylated Polymeric Immunoglobulin Receptor Protein</title><author>Matsumoto, N. ; Asano, M. ; Ogura, Y. ; Takenouchi‐Ohkubo, N. ; Chihaya, H. ; Chung‐Hsing, W. ; Ishikawa, K. ; Zhu, L. ; Moro, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4895-ce909d31d350a810b060b1bf90f9d0c81f7db0d0dd2493bf7853b2e680b22fb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Animals</topic><topic>Antibodies - analysis</topic><topic>Antibodies - immunology</topic><topic>Cricetinae</topic><topic>endoglycosidase H</topic><topic>Glycosylation</topic><topic>immunoglobulin receptors</topic><topic>Receptors, Polymeric Immunoglobulin - immunology</topic><topic>Receptors, Polymeric Immunoglobulin - metabolism</topic><topic>Vaccinia virus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matsumoto, N.</creatorcontrib><creatorcontrib>Asano, M.</creatorcontrib><creatorcontrib>Ogura, Y.</creatorcontrib><creatorcontrib>Takenouchi‐Ohkubo, N.</creatorcontrib><creatorcontrib>Chihaya, H.</creatorcontrib><creatorcontrib>Chung‐Hsing, W.</creatorcontrib><creatorcontrib>Ishikawa, K.</creatorcontrib><creatorcontrib>Zhu, L.</creatorcontrib><creatorcontrib>Moro, I.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Scandinavian journal of immunology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matsumoto, N.</au><au>Asano, M.</au><au>Ogura, Y.</au><au>Takenouchi‐Ohkubo, N.</au><au>Chihaya, H.</au><au>Chung‐Hsing, W.</au><au>Ishikawa, K.</au><au>Zhu, L.</au><au>Moro, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Release of Non‐Glycosylated Polymeric Immunoglobulin Receptor Protein</atitle><jtitle>Scandinavian journal of immunology</jtitle><addtitle>Scand J Immunol</addtitle><date>2003-10</date><risdate>2003</risdate><volume>58</volume><issue>4</issue><spage>471</spage><epage>476</epage><pages>471-476</pages><issn>0300-9475</issn><eissn>1365-3083</eissn><abstract>Using a recombinant vaccinia virus containing the T7 RNA polymerase, we have established a system for the transient expression of human polymeric immunoglobulin receptor (pIgR) in baby hamster kidney cells, a baby hamster‐derived fibroblastic cell line. This transfection system resulted in the successful expression of pIgR in these cells, and Western blot analysis showed that human pIgR was expressed as two different molecular weight forms of 92 and 107 kDa. Treatment with endoglycosidase H showed that the difference between these two forms was due to the glycosylation status of the protein. In order to examine the functional role of glycosylation, we treated the transfected cells with tunicamycin, which prevents a core glycosylation step in the endoplasmic reticulum. Non‐glycosylated pIgR was released into the culture medium of the transfected cells, albeit with extremely low efficiency. Taking these results together, we conclude that the glycosylation of pIgR may play a positive role in the efficient transport or release of free pIgR.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><pmid>14507312</pmid><doi>10.1046/j.1365-3083.2003.01325.x</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0300-9475
ispartof Scandinavian journal of immunology, 2003-10, Vol.58 (4), p.471-476
issn 0300-9475
1365-3083
language eng
recordid cdi_proquest_miscellaneous_75711126
source Wiley Free Content; MEDLINE; IngentaConnect Free/Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Animals
Antibodies - analysis
Antibodies - immunology
Cricetinae
endoglycosidase H
Glycosylation
immunoglobulin receptors
Receptors, Polymeric Immunoglobulin - immunology
Receptors, Polymeric Immunoglobulin - metabolism
Vaccinia virus
title Release of Non‐Glycosylated Polymeric Immunoglobulin Receptor Protein
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T11%3A11%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Release%20of%20Non%E2%80%90Glycosylated%20Polymeric%20Immunoglobulin%20Receptor%20Protein&rft.jtitle=Scandinavian%20journal%20of%20immunology&rft.au=Matsumoto,%20N.&rft.date=2003-10&rft.volume=58&rft.issue=4&rft.spage=471&rft.epage=476&rft.pages=471-476&rft.issn=0300-9475&rft.eissn=1365-3083&rft_id=info:doi/10.1046/j.1365-3083.2003.01325.x&rft_dat=%3Cproquest_cross%3E75711126%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=198210247&rft_id=info:pmid/14507312&rfr_iscdi=true