Release of Non‐Glycosylated Polymeric Immunoglobulin Receptor Protein
Using a recombinant vaccinia virus containing the T7 RNA polymerase, we have established a system for the transient expression of human polymeric immunoglobulin receptor (pIgR) in baby hamster kidney cells, a baby hamster‐derived fibroblastic cell line. This transfection system resulted in the succe...
Gespeichert in:
Veröffentlicht in: | Scandinavian journal of immunology 2003-10, Vol.58 (4), p.471-476 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 476 |
---|---|
container_issue | 4 |
container_start_page | 471 |
container_title | Scandinavian journal of immunology |
container_volume | 58 |
creator | Matsumoto, N. Asano, M. Ogura, Y. Takenouchi‐Ohkubo, N. Chihaya, H. Chung‐Hsing, W. Ishikawa, K. Zhu, L. Moro, I. |
description | Using a recombinant vaccinia virus containing the T7 RNA polymerase, we have established a system for the transient expression of human polymeric immunoglobulin receptor (pIgR) in baby hamster kidney cells, a baby hamster‐derived fibroblastic cell line. This transfection system resulted in the successful expression of pIgR in these cells, and Western blot analysis showed that human pIgR was expressed as two different molecular weight forms of 92 and 107 kDa. Treatment with endoglycosidase H showed that the difference between these two forms was due to the glycosylation status of the protein. In order to examine the functional role of glycosylation, we treated the transfected cells with tunicamycin, which prevents a core glycosylation step in the endoplasmic reticulum. Non‐glycosylated pIgR was released into the culture medium of the transfected cells, albeit with extremely low efficiency. Taking these results together, we conclude that the glycosylation of pIgR may play a positive role in the efficient transport or release of free pIgR. |
doi_str_mv | 10.1046/j.1365-3083.2003.01325.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_75711126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>75711126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4895-ce909d31d350a810b060b1bf90f9d0c81f7db0d0dd2493bf7853b2e680b22fb43</originalsourceid><addsrcrecordid>eNqNkcFO3DAQhi1EBQvtK6CIA7ekYztO7AOHCtFlK1QQbc9WHE9QVk68tTcqufUR-ox9kibdFUi9lNOMNN__S_P_hCQUMgp58X6dUV6IlIPkGQPgGVDORPZ0QBbPh0OyAA6QqrwUx-QkxjXMVMmPyDHNBZScsgVZPqDDKmLim-Sz73___LV0Y-3j6Kot2uTeu7HD0NbJquuG3j86bwbX9skD1rjZ-pDcB7_Ftn9L3jSVi_huP0_Jt4_XX69u0tu75erqw21a51KJtEYFynJquYBKUjBQgKGmUdAoC7WkTWkNWLCW5YqbppSCG4aFBMNYY3J-Si52vpvgvw8Yt7prY43OVT36IepSlJRSVvwXpFIVHJiYwPN_wLUfQj89oamSjALLywmSO6gOPsaAjd6EtqvCqCnouRK91nPyek5ez5Xov5Xop0l6tvcfTIf2RbjvYAIud8CP1uH4amP95dNq3vgfV6-aAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198210247</pqid></control><display><type>article</type><title>Release of Non‐Glycosylated Polymeric Immunoglobulin Receptor Protein</title><source>Wiley Free Content</source><source>MEDLINE</source><source>IngentaConnect Free/Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Matsumoto, N. ; Asano, M. ; Ogura, Y. ; Takenouchi‐Ohkubo, N. ; Chihaya, H. ; Chung‐Hsing, W. ; Ishikawa, K. ; Zhu, L. ; Moro, I.</creator><creatorcontrib>Matsumoto, N. ; Asano, M. ; Ogura, Y. ; Takenouchi‐Ohkubo, N. ; Chihaya, H. ; Chung‐Hsing, W. ; Ishikawa, K. ; Zhu, L. ; Moro, I.</creatorcontrib><description>Using a recombinant vaccinia virus containing the T7 RNA polymerase, we have established a system for the transient expression of human polymeric immunoglobulin receptor (pIgR) in baby hamster kidney cells, a baby hamster‐derived fibroblastic cell line. This transfection system resulted in the successful expression of pIgR in these cells, and Western blot analysis showed that human pIgR was expressed as two different molecular weight forms of 92 and 107 kDa. Treatment with endoglycosidase H showed that the difference between these two forms was due to the glycosylation status of the protein. In order to examine the functional role of glycosylation, we treated the transfected cells with tunicamycin, which prevents a core glycosylation step in the endoplasmic reticulum. Non‐glycosylated pIgR was released into the culture medium of the transfected cells, albeit with extremely low efficiency. Taking these results together, we conclude that the glycosylation of pIgR may play a positive role in the efficient transport or release of free pIgR.</description><identifier>ISSN: 0300-9475</identifier><identifier>EISSN: 1365-3083</identifier><identifier>DOI: 10.1046/j.1365-3083.2003.01325.x</identifier><identifier>PMID: 14507312</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>Animals ; Antibodies - analysis ; Antibodies - immunology ; Cricetinae ; endoglycosidase H ; Glycosylation ; immunoglobulin receptors ; Receptors, Polymeric Immunoglobulin - immunology ; Receptors, Polymeric Immunoglobulin - metabolism ; Vaccinia virus</subject><ispartof>Scandinavian journal of immunology, 2003-10, Vol.58 (4), p.471-476</ispartof><rights>Copyright Blackwell Scientific Publications Ltd. Oct 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4895-ce909d31d350a810b060b1bf90f9d0c81f7db0d0dd2493bf7853b2e680b22fb43</citedby><cites>FETCH-LOGICAL-c4895-ce909d31d350a810b060b1bf90f9d0c81f7db0d0dd2493bf7853b2e680b22fb43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1046%2Fj.1365-3083.2003.01325.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1046%2Fj.1365-3083.2003.01325.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14507312$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Matsumoto, N.</creatorcontrib><creatorcontrib>Asano, M.</creatorcontrib><creatorcontrib>Ogura, Y.</creatorcontrib><creatorcontrib>Takenouchi‐Ohkubo, N.</creatorcontrib><creatorcontrib>Chihaya, H.</creatorcontrib><creatorcontrib>Chung‐Hsing, W.</creatorcontrib><creatorcontrib>Ishikawa, K.</creatorcontrib><creatorcontrib>Zhu, L.</creatorcontrib><creatorcontrib>Moro, I.</creatorcontrib><title>Release of Non‐Glycosylated Polymeric Immunoglobulin Receptor Protein</title><title>Scandinavian journal of immunology</title><addtitle>Scand J Immunol</addtitle><description>Using a recombinant vaccinia virus containing the T7 RNA polymerase, we have established a system for the transient expression of human polymeric immunoglobulin receptor (pIgR) in baby hamster kidney cells, a baby hamster‐derived fibroblastic cell line. This transfection system resulted in the successful expression of pIgR in these cells, and Western blot analysis showed that human pIgR was expressed as two different molecular weight forms of 92 and 107 kDa. Treatment with endoglycosidase H showed that the difference between these two forms was due to the glycosylation status of the protein. In order to examine the functional role of glycosylation, we treated the transfected cells with tunicamycin, which prevents a core glycosylation step in the endoplasmic reticulum. Non‐glycosylated pIgR was released into the culture medium of the transfected cells, albeit with extremely low efficiency. Taking these results together, we conclude that the glycosylation of pIgR may play a positive role in the efficient transport or release of free pIgR.</description><subject>Animals</subject><subject>Antibodies - analysis</subject><subject>Antibodies - immunology</subject><subject>Cricetinae</subject><subject>endoglycosidase H</subject><subject>Glycosylation</subject><subject>immunoglobulin receptors</subject><subject>Receptors, Polymeric Immunoglobulin - immunology</subject><subject>Receptors, Polymeric Immunoglobulin - metabolism</subject><subject>Vaccinia virus</subject><issn>0300-9475</issn><issn>1365-3083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcFO3DAQhi1EBQvtK6CIA7ekYztO7AOHCtFlK1QQbc9WHE9QVk68tTcqufUR-ox9kibdFUi9lNOMNN__S_P_hCQUMgp58X6dUV6IlIPkGQPgGVDORPZ0QBbPh0OyAA6QqrwUx-QkxjXMVMmPyDHNBZScsgVZPqDDKmLim-Sz73___LV0Y-3j6Kot2uTeu7HD0NbJquuG3j86bwbX9skD1rjZ-pDcB7_Ftn9L3jSVi_huP0_Jt4_XX69u0tu75erqw21a51KJtEYFynJquYBKUjBQgKGmUdAoC7WkTWkNWLCW5YqbppSCG4aFBMNYY3J-Si52vpvgvw8Yt7prY43OVT36IepSlJRSVvwXpFIVHJiYwPN_wLUfQj89oamSjALLywmSO6gOPsaAjd6EtqvCqCnouRK91nPyek5ez5Xov5Xop0l6tvcfTIf2RbjvYAIud8CP1uH4amP95dNq3vgfV6-aAA</recordid><startdate>200310</startdate><enddate>200310</enddate><creator>Matsumoto, N.</creator><creator>Asano, M.</creator><creator>Ogura, Y.</creator><creator>Takenouchi‐Ohkubo, N.</creator><creator>Chihaya, H.</creator><creator>Chung‐Hsing, W.</creator><creator>Ishikawa, K.</creator><creator>Zhu, L.</creator><creator>Moro, I.</creator><general>Blackwell Science Ltd</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>200310</creationdate><title>Release of Non‐Glycosylated Polymeric Immunoglobulin Receptor Protein</title><author>Matsumoto, N. ; Asano, M. ; Ogura, Y. ; Takenouchi‐Ohkubo, N. ; Chihaya, H. ; Chung‐Hsing, W. ; Ishikawa, K. ; Zhu, L. ; Moro, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4895-ce909d31d350a810b060b1bf90f9d0c81f7db0d0dd2493bf7853b2e680b22fb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Animals</topic><topic>Antibodies - analysis</topic><topic>Antibodies - immunology</topic><topic>Cricetinae</topic><topic>endoglycosidase H</topic><topic>Glycosylation</topic><topic>immunoglobulin receptors</topic><topic>Receptors, Polymeric Immunoglobulin - immunology</topic><topic>Receptors, Polymeric Immunoglobulin - metabolism</topic><topic>Vaccinia virus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matsumoto, N.</creatorcontrib><creatorcontrib>Asano, M.</creatorcontrib><creatorcontrib>Ogura, Y.</creatorcontrib><creatorcontrib>Takenouchi‐Ohkubo, N.</creatorcontrib><creatorcontrib>Chihaya, H.</creatorcontrib><creatorcontrib>Chung‐Hsing, W.</creatorcontrib><creatorcontrib>Ishikawa, K.</creatorcontrib><creatorcontrib>Zhu, L.</creatorcontrib><creatorcontrib>Moro, I.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Scandinavian journal of immunology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matsumoto, N.</au><au>Asano, M.</au><au>Ogura, Y.</au><au>Takenouchi‐Ohkubo, N.</au><au>Chihaya, H.</au><au>Chung‐Hsing, W.</au><au>Ishikawa, K.</au><au>Zhu, L.</au><au>Moro, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Release of Non‐Glycosylated Polymeric Immunoglobulin Receptor Protein</atitle><jtitle>Scandinavian journal of immunology</jtitle><addtitle>Scand J Immunol</addtitle><date>2003-10</date><risdate>2003</risdate><volume>58</volume><issue>4</issue><spage>471</spage><epage>476</epage><pages>471-476</pages><issn>0300-9475</issn><eissn>1365-3083</eissn><abstract>Using a recombinant vaccinia virus containing the T7 RNA polymerase, we have established a system for the transient expression of human polymeric immunoglobulin receptor (pIgR) in baby hamster kidney cells, a baby hamster‐derived fibroblastic cell line. This transfection system resulted in the successful expression of pIgR in these cells, and Western blot analysis showed that human pIgR was expressed as two different molecular weight forms of 92 and 107 kDa. Treatment with endoglycosidase H showed that the difference between these two forms was due to the glycosylation status of the protein. In order to examine the functional role of glycosylation, we treated the transfected cells with tunicamycin, which prevents a core glycosylation step in the endoplasmic reticulum. Non‐glycosylated pIgR was released into the culture medium of the transfected cells, albeit with extremely low efficiency. Taking these results together, we conclude that the glycosylation of pIgR may play a positive role in the efficient transport or release of free pIgR.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><pmid>14507312</pmid><doi>10.1046/j.1365-3083.2003.01325.x</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0300-9475 |
ispartof | Scandinavian journal of immunology, 2003-10, Vol.58 (4), p.471-476 |
issn | 0300-9475 1365-3083 |
language | eng |
recordid | cdi_proquest_miscellaneous_75711126 |
source | Wiley Free Content; MEDLINE; IngentaConnect Free/Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Animals Antibodies - analysis Antibodies - immunology Cricetinae endoglycosidase H Glycosylation immunoglobulin receptors Receptors, Polymeric Immunoglobulin - immunology Receptors, Polymeric Immunoglobulin - metabolism Vaccinia virus |
title | Release of Non‐Glycosylated Polymeric Immunoglobulin Receptor Protein |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T11%3A11%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Release%20of%20Non%E2%80%90Glycosylated%20Polymeric%20Immunoglobulin%20Receptor%20Protein&rft.jtitle=Scandinavian%20journal%20of%20immunology&rft.au=Matsumoto,%20N.&rft.date=2003-10&rft.volume=58&rft.issue=4&rft.spage=471&rft.epage=476&rft.pages=471-476&rft.issn=0300-9475&rft.eissn=1365-3083&rft_id=info:doi/10.1046/j.1365-3083.2003.01325.x&rft_dat=%3Cproquest_cross%3E75711126%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=198210247&rft_id=info:pmid/14507312&rfr_iscdi=true |