Sequential transformation for multiple traits for estimation of (co)variance components with a derivative-free algorithm for restricted maximum likelihood
Transformation of multiple-trait records that undergo sequential selection can be used with derivative-free algorithms to maximize the restricted likelihood in estimation of covariance matrices as with derivative methods. Data transformation with appropriate parts of the Choleski decomposition of th...
Gespeichert in:
Veröffentlicht in: | Journal of animal science 1993-04, Vol.71 (4), p.836-844 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 844 |
---|---|
container_issue | 4 |
container_start_page | 836 |
container_title | Journal of animal science |
container_volume | 71 |
creator | Van Vleck, L.D Boldman, K.G |
description | Transformation of multiple-trait records that undergo sequential selection can be used with derivative-free algorithms to maximize the restricted likelihood in estimation of covariance matrices as with derivative methods. Data transformation with appropriate parts of the Choleski decomposition of the current estimate of the residual covariance matrix results in mixed-model equations that are easily modified from round to round for calculation of the logarithm of the likelihood. The residual sum of squares is the same for transformed and untransformed analyses. Most importantly, the logarithm of the determinant of the untransformed coefficient matrix is an easily determined function of the Choleski decomposition of the residual covariance matrix and the determinant of the transformed coefficient matrix. Thus, the logarithm of the likelihood for any combination of covariance matrices can be determined from the transformed equations. Advantages of transformation are 1) the multiple-trait mixed-model equations are easy to set up, 2) the least squares part of the equations does not change from round to round, 3) right-hand sides change from round to round by constant multipliers, and 4) less memory is required. An example showed only a slight advantage of the transformation compared with no transformation in terms of solution time for each round (1 to 5%). |
doi_str_mv | 10.2527/1993.714836x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_75703294</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>75703294</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-f7343d94de35567019a8041b9e45b5185c92bbf344e22b5e0ed0c61a965e0c833</originalsourceid><addsrcrecordid>eNpdkc1u1DAUhSMEKkNhxxZhIUAgkeLfOF5WFX9SJRala8txbmY8OPFgO9PyKjxtPZ2oC1a-8vn02bqnql4SfEYFlZ-JUuxMEt6y5vZRtSKCipqRhj2uVhhTUrctoU-rZyltMSZUKHFSnbRctrQVq-rfFfyZYcrOeJSjmdIQ4miyCxMqExpnn93OwyFzOd3fQcpuQcKAPtjwcW-iM5MFZMO4C1PRJXTj8gYZ1EN0-wLvoR4iADJ-HWKJxntVLK7obIYejebWjfOIvPsN3m1C6J9XTwbjE7xYztPq-uuXXxff68uf335cnF_Wlqkm14NknPWK98CEaCQmyrSYk04BF50grbCKdt3AOAdKOwEYemwbYlRTZtsydlq9P3p3MZRdpKxHlyx4byYIc9JSSMyo4gV88x-4DXOcyt80JWXJpYC2QJ-OkI0hpQiD3sWyrvhXE6wPfelDX3rpq-CvFufcjdA_wEtBJX-75CZZ44dSkXXpAeOS4UaSgr07Yhu33ty4CDqNxvsiJXprkiSa6_Je4V4fucEEbdaxqK6vKCYMEymFoordAWFxthM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218128368</pqid></control><display><type>article</type><title>Sequential transformation for multiple traits for estimation of (co)variance components with a derivative-free algorithm for restricted maximum likelihood</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Van Vleck, L.D ; Boldman, K.G</creator><creatorcontrib>Van Vleck, L.D ; Boldman, K.G</creatorcontrib><description>Transformation of multiple-trait records that undergo sequential selection can be used with derivative-free algorithms to maximize the restricted likelihood in estimation of covariance matrices as with derivative methods. Data transformation with appropriate parts of the Choleski decomposition of the current estimate of the residual covariance matrix results in mixed-model equations that are easily modified from round to round for calculation of the logarithm of the likelihood. The residual sum of squares is the same for transformed and untransformed analyses. Most importantly, the logarithm of the determinant of the untransformed coefficient matrix is an easily determined function of the Choleski decomposition of the residual covariance matrix and the determinant of the transformed coefficient matrix. Thus, the logarithm of the likelihood for any combination of covariance matrices can be determined from the transformed equations. Advantages of transformation are 1) the multiple-trait mixed-model equations are easy to set up, 2) the least squares part of the equations does not change from round to round, 3) right-hand sides change from round to round by constant multipliers, and 4) less memory is required. An example showed only a slight advantage of the transformation compared with no transformation in terms of solution time for each round (1 to 5%).</description><identifier>ISSN: 0021-8812</identifier><identifier>EISSN: 1525-3163</identifier><identifier>DOI: 10.2527/1993.714836x</identifier><identifier>PMID: 8478285</identifier><language>eng</language><publisher>Savoy, IL: Am Soc Animal Sci</publisher><subject>Algorithms ; Analysis of Variance ; Animals ; Animals, Domestic - genetics ; Biological and medical sciences ; Breeding ; computer software ; equations ; Female ; Food industries ; Fundamental and applied biological sciences. Psychology ; Genetics ; Likelihood Functions ; Male ; mathematical models ; matrices ; maximum likelihood ; Meat and meat product industries ; Models, Genetic ; multivariate analysis ; traits</subject><ispartof>Journal of animal science, 1993-04, Vol.71 (4), p.836-844</ispartof><rights>1993 INIST-CNRS</rights><rights>Copyright American Society of Animal Science Apr 1993</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-f7343d94de35567019a8041b9e45b5185c92bbf344e22b5e0ed0c61a965e0c833</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4730671$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8478285$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Van Vleck, L.D</creatorcontrib><creatorcontrib>Boldman, K.G</creatorcontrib><title>Sequential transformation for multiple traits for estimation of (co)variance components with a derivative-free algorithm for restricted maximum likelihood</title><title>Journal of animal science</title><addtitle>J Anim Sci</addtitle><description>Transformation of multiple-trait records that undergo sequential selection can be used with derivative-free algorithms to maximize the restricted likelihood in estimation of covariance matrices as with derivative methods. Data transformation with appropriate parts of the Choleski decomposition of the current estimate of the residual covariance matrix results in mixed-model equations that are easily modified from round to round for calculation of the logarithm of the likelihood. The residual sum of squares is the same for transformed and untransformed analyses. Most importantly, the logarithm of the determinant of the untransformed coefficient matrix is an easily determined function of the Choleski decomposition of the residual covariance matrix and the determinant of the transformed coefficient matrix. Thus, the logarithm of the likelihood for any combination of covariance matrices can be determined from the transformed equations. Advantages of transformation are 1) the multiple-trait mixed-model equations are easy to set up, 2) the least squares part of the equations does not change from round to round, 3) right-hand sides change from round to round by constant multipliers, and 4) less memory is required. An example showed only a slight advantage of the transformation compared with no transformation in terms of solution time for each round (1 to 5%).</description><subject>Algorithms</subject><subject>Analysis of Variance</subject><subject>Animals</subject><subject>Animals, Domestic - genetics</subject><subject>Biological and medical sciences</subject><subject>Breeding</subject><subject>computer software</subject><subject>equations</subject><subject>Female</subject><subject>Food industries</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetics</subject><subject>Likelihood Functions</subject><subject>Male</subject><subject>mathematical models</subject><subject>matrices</subject><subject>maximum likelihood</subject><subject>Meat and meat product industries</subject><subject>Models, Genetic</subject><subject>multivariate analysis</subject><subject>traits</subject><issn>0021-8812</issn><issn>1525-3163</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1u1DAUhSMEKkNhxxZhIUAgkeLfOF5WFX9SJRala8txbmY8OPFgO9PyKjxtPZ2oC1a-8vn02bqnql4SfEYFlZ-JUuxMEt6y5vZRtSKCipqRhj2uVhhTUrctoU-rZyltMSZUKHFSnbRctrQVq-rfFfyZYcrOeJSjmdIQ4miyCxMqExpnn93OwyFzOd3fQcpuQcKAPtjwcW-iM5MFZMO4C1PRJXTj8gYZ1EN0-wLvoR4iADJ-HWKJxntVLK7obIYejebWjfOIvPsN3m1C6J9XTwbjE7xYztPq-uuXXxff68uf335cnF_Wlqkm14NknPWK98CEaCQmyrSYk04BF50grbCKdt3AOAdKOwEYemwbYlRTZtsydlq9P3p3MZRdpKxHlyx4byYIc9JSSMyo4gV88x-4DXOcyt80JWXJpYC2QJ-OkI0hpQiD3sWyrvhXE6wPfelDX3rpq-CvFufcjdA_wEtBJX-75CZZ44dSkXXpAeOS4UaSgr07Yhu33ty4CDqNxvsiJXprkiSa6_Je4V4fucEEbdaxqK6vKCYMEymFoordAWFxthM</recordid><startdate>19930401</startdate><enddate>19930401</enddate><creator>Van Vleck, L.D</creator><creator>Boldman, K.G</creator><general>Am Soc Animal Sci</general><general>American Society of Animal Science</general><general>Oxford University Press</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>U9A</scope><scope>7X8</scope></search><sort><creationdate>19930401</creationdate><title>Sequential transformation for multiple traits for estimation of (co)variance components with a derivative-free algorithm for restricted maximum likelihood</title><author>Van Vleck, L.D ; Boldman, K.G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-f7343d94de35567019a8041b9e45b5185c92bbf344e22b5e0ed0c61a965e0c833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Algorithms</topic><topic>Analysis of Variance</topic><topic>Animals</topic><topic>Animals, Domestic - genetics</topic><topic>Biological and medical sciences</topic><topic>Breeding</topic><topic>computer software</topic><topic>equations</topic><topic>Female</topic><topic>Food industries</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetics</topic><topic>Likelihood Functions</topic><topic>Male</topic><topic>mathematical models</topic><topic>matrices</topic><topic>maximum likelihood</topic><topic>Meat and meat product industries</topic><topic>Models, Genetic</topic><topic>multivariate analysis</topic><topic>traits</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van Vleck, L.D</creatorcontrib><creatorcontrib>Boldman, K.G</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of animal science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van Vleck, L.D</au><au>Boldman, K.G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sequential transformation for multiple traits for estimation of (co)variance components with a derivative-free algorithm for restricted maximum likelihood</atitle><jtitle>Journal of animal science</jtitle><addtitle>J Anim Sci</addtitle><date>1993-04-01</date><risdate>1993</risdate><volume>71</volume><issue>4</issue><spage>836</spage><epage>844</epage><pages>836-844</pages><issn>0021-8812</issn><eissn>1525-3163</eissn><abstract>Transformation of multiple-trait records that undergo sequential selection can be used with derivative-free algorithms to maximize the restricted likelihood in estimation of covariance matrices as with derivative methods. Data transformation with appropriate parts of the Choleski decomposition of the current estimate of the residual covariance matrix results in mixed-model equations that are easily modified from round to round for calculation of the logarithm of the likelihood. The residual sum of squares is the same for transformed and untransformed analyses. Most importantly, the logarithm of the determinant of the untransformed coefficient matrix is an easily determined function of the Choleski decomposition of the residual covariance matrix and the determinant of the transformed coefficient matrix. Thus, the logarithm of the likelihood for any combination of covariance matrices can be determined from the transformed equations. Advantages of transformation are 1) the multiple-trait mixed-model equations are easy to set up, 2) the least squares part of the equations does not change from round to round, 3) right-hand sides change from round to round by constant multipliers, and 4) less memory is required. An example showed only a slight advantage of the transformation compared with no transformation in terms of solution time for each round (1 to 5%).</abstract><cop>Savoy, IL</cop><pub>Am Soc Animal Sci</pub><pmid>8478285</pmid><doi>10.2527/1993.714836x</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8812 |
ispartof | Journal of animal science, 1993-04, Vol.71 (4), p.836-844 |
issn | 0021-8812 1525-3163 |
language | eng |
recordid | cdi_proquest_miscellaneous_75703294 |
source | MEDLINE; Alma/SFX Local Collection |
subjects | Algorithms Analysis of Variance Animals Animals, Domestic - genetics Biological and medical sciences Breeding computer software equations Female Food industries Fundamental and applied biological sciences. Psychology Genetics Likelihood Functions Male mathematical models matrices maximum likelihood Meat and meat product industries Models, Genetic multivariate analysis traits |
title | Sequential transformation for multiple traits for estimation of (co)variance components with a derivative-free algorithm for restricted maximum likelihood |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T01%3A39%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sequential%20transformation%20for%20multiple%20traits%20for%20estimation%20of%20(co)variance%20components%20with%20a%20derivative-free%20algorithm%20for%20restricted%20maximum%20likelihood&rft.jtitle=Journal%20of%20animal%20science&rft.au=Van%20Vleck,%20L.D&rft.date=1993-04-01&rft.volume=71&rft.issue=4&rft.spage=836&rft.epage=844&rft.pages=836-844&rft.issn=0021-8812&rft.eissn=1525-3163&rft_id=info:doi/10.2527/1993.714836x&rft_dat=%3Cproquest_cross%3E75703294%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=218128368&rft_id=info:pmid/8478285&rfr_iscdi=true |