Sphingomyelinase Activity Causes Transbilayer Lipid Translocation in Model and Cell Membranes

Ceramide is known to induce structural rearrangements in membrane bilayers, including the formation of ceramide-rich and -poor domains and the efflux of aqueous solutes. This report describes a novel effect of ceramide, namely the induction of transbilayer lipid movements. This effect was demonstrat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2003-09, Vol.278 (39), p.37169-37174
Hauptverfasser: Contreras, F.-Xabier, Villar, Ana-Victoria, Alonso, Alicia, Kolesnick, Richard N., Goñi, Félix M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 37174
container_issue 39
container_start_page 37169
container_title The Journal of biological chemistry
container_volume 278
creator Contreras, F.-Xabier
Villar, Ana-Victoria
Alonso, Alicia
Kolesnick, Richard N.
Goñi, Félix M.
description Ceramide is known to induce structural rearrangements in membrane bilayers, including the formation of ceramide-rich and -poor domains and the efflux of aqueous solutes. This report describes a novel effect of ceramide, namely the induction of transbilayer lipid movements. This effect was demonstrated in both model (large unilamellar vesicles) and cell (erythrocyte ghost) membranes in which ceramide generation took place in situ through the action of an externally added sphingomyelinase. Two different novel assays were developed to detect transbilayer lipid movement. One of the assays required the preparation of vesicles containing a ganglioside only in the outer monolayer and entrapped neuraminidase. Sphingomyelinase activity induced ganglioside hydrolysis under conditions in which no neuraminidase was released from the vesicles. The second assay involved the preparation of liposomes or erythrocyte ghosts labeled with a fluorescent energy donor in their inner leaflets. Sphingomyelin hydrolysis was accompanied by fluorescence energy transfer to an impermeable acceptor in the outer aqueous medium. Ceramide-induced transbilayer lipid movement is explained in terms of another well known property of ceramide, namely the facilitation of lamellar to non-lamellar lipid-phase transitions. Thus, sphingomyelinase generates ceramide on one side of the membrane; ceramide then induces the transient formation of non-lamellar structural intermediates, which cause the loss of lipid asymmetry in the bilayer, i.e. the transbilayer movement of ceramide together with other lipids. As direct targets for ceramide tend to be intracellular, these observations may be relevant to the mechanism of transmembrane signaling by means of the sphingomyelin pathway.
doi_str_mv 10.1074/jbc.M303206200
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_75700578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820832724</els_id><sourcerecordid>75700578</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-bf8370e8ad55a666ff29c9664d192c5953fbf4906dc6f49ee78e09a04b76c4db3</originalsourceid><addsrcrecordid>eNp1kMtrGzEQh0Vpady01x6LDqW3daXV6nUMJn2ATQ9JIJci9JiNFXZXrrRO8X8flTXk1LkMDN8Mv_kQ-kjJmhLZfX10fr1jhLVEtIS8QitKFGsYp_ev0YqQlja65eoCvSvlkdTqNH2LLmirOJekW6HfN4d9nB7SeIIhTrYAvvJzfIrzCW_ssUDBt9lOxcXBniDjbTzEsIyG5O0c04TjhHcpwIDtFPAGhgHvYHQVgfIeventUODDuV-iu2_Xt5sfzfbX95-bq23jO8nnxvWKSQLKBs6tEKLvW-21EF2guvVcc9a7vtNEBC9qB5AKiLakc1L4Ljh2ib4sdw85_TlCmc0Yi69Raoh0LEbWZwmXqoLrBfQ5lZKhN4ccR5tPhhLzT6ipQs2L0Lrw6Xz56EYIL_jZYAU-L8A-Puz_xgzGxeT3MJpWKsO0YZIKXTG1YFA1PEXIpvgIk4dQV_xsQor_i_AM23-Q1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>75700578</pqid></control><display><type>article</type><title>Sphingomyelinase Activity Causes Transbilayer Lipid Translocation in Model and Cell Membranes</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Contreras, F.-Xabier ; Villar, Ana-Victoria ; Alonso, Alicia ; Kolesnick, Richard N. ; Goñi, Félix M.</creator><creatorcontrib>Contreras, F.-Xabier ; Villar, Ana-Victoria ; Alonso, Alicia ; Kolesnick, Richard N. ; Goñi, Félix M.</creatorcontrib><description>Ceramide is known to induce structural rearrangements in membrane bilayers, including the formation of ceramide-rich and -poor domains and the efflux of aqueous solutes. This report describes a novel effect of ceramide, namely the induction of transbilayer lipid movements. This effect was demonstrated in both model (large unilamellar vesicles) and cell (erythrocyte ghost) membranes in which ceramide generation took place in situ through the action of an externally added sphingomyelinase. Two different novel assays were developed to detect transbilayer lipid movement. One of the assays required the preparation of vesicles containing a ganglioside only in the outer monolayer and entrapped neuraminidase. Sphingomyelinase activity induced ganglioside hydrolysis under conditions in which no neuraminidase was released from the vesicles. The second assay involved the preparation of liposomes or erythrocyte ghosts labeled with a fluorescent energy donor in their inner leaflets. Sphingomyelin hydrolysis was accompanied by fluorescence energy transfer to an impermeable acceptor in the outer aqueous medium. Ceramide-induced transbilayer lipid movement is explained in terms of another well known property of ceramide, namely the facilitation of lamellar to non-lamellar lipid-phase transitions. Thus, sphingomyelinase generates ceramide on one side of the membrane; ceramide then induces the transient formation of non-lamellar structural intermediates, which cause the loss of lipid asymmetry in the bilayer, i.e. the transbilayer movement of ceramide together with other lipids. As direct targets for ceramide tend to be intracellular, these observations may be relevant to the mechanism of transmembrane signaling by means of the sphingomyelin pathway.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M303206200</identifier><identifier>PMID: 12855704</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Biological Transport ; Cell Membrane - metabolism ; Erythrocyte Membrane - metabolism ; Fluorescence Resonance Energy Transfer ; Gangliosides - metabolism ; Humans ; Kinetics ; Lipid Bilayers - metabolism ; Membrane Lipids - metabolism ; Sphingomyelin Phosphodiesterase - metabolism</subject><ispartof>The Journal of biological chemistry, 2003-09, Vol.278 (39), p.37169-37174</ispartof><rights>2003 © 2003 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-bf8370e8ad55a666ff29c9664d192c5953fbf4906dc6f49ee78e09a04b76c4db3</citedby><cites>FETCH-LOGICAL-c475t-bf8370e8ad55a666ff29c9664d192c5953fbf4906dc6f49ee78e09a04b76c4db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12855704$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Contreras, F.-Xabier</creatorcontrib><creatorcontrib>Villar, Ana-Victoria</creatorcontrib><creatorcontrib>Alonso, Alicia</creatorcontrib><creatorcontrib>Kolesnick, Richard N.</creatorcontrib><creatorcontrib>Goñi, Félix M.</creatorcontrib><title>Sphingomyelinase Activity Causes Transbilayer Lipid Translocation in Model and Cell Membranes</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Ceramide is known to induce structural rearrangements in membrane bilayers, including the formation of ceramide-rich and -poor domains and the efflux of aqueous solutes. This report describes a novel effect of ceramide, namely the induction of transbilayer lipid movements. This effect was demonstrated in both model (large unilamellar vesicles) and cell (erythrocyte ghost) membranes in which ceramide generation took place in situ through the action of an externally added sphingomyelinase. Two different novel assays were developed to detect transbilayer lipid movement. One of the assays required the preparation of vesicles containing a ganglioside only in the outer monolayer and entrapped neuraminidase. Sphingomyelinase activity induced ganglioside hydrolysis under conditions in which no neuraminidase was released from the vesicles. The second assay involved the preparation of liposomes or erythrocyte ghosts labeled with a fluorescent energy donor in their inner leaflets. Sphingomyelin hydrolysis was accompanied by fluorescence energy transfer to an impermeable acceptor in the outer aqueous medium. Ceramide-induced transbilayer lipid movement is explained in terms of another well known property of ceramide, namely the facilitation of lamellar to non-lamellar lipid-phase transitions. Thus, sphingomyelinase generates ceramide on one side of the membrane; ceramide then induces the transient formation of non-lamellar structural intermediates, which cause the loss of lipid asymmetry in the bilayer, i.e. the transbilayer movement of ceramide together with other lipids. As direct targets for ceramide tend to be intracellular, these observations may be relevant to the mechanism of transmembrane signaling by means of the sphingomyelin pathway.</description><subject>Biological Transport</subject><subject>Cell Membrane - metabolism</subject><subject>Erythrocyte Membrane - metabolism</subject><subject>Fluorescence Resonance Energy Transfer</subject><subject>Gangliosides - metabolism</subject><subject>Humans</subject><subject>Kinetics</subject><subject>Lipid Bilayers - metabolism</subject><subject>Membrane Lipids - metabolism</subject><subject>Sphingomyelin Phosphodiesterase - metabolism</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kMtrGzEQh0Vpady01x6LDqW3daXV6nUMJn2ATQ9JIJci9JiNFXZXrrRO8X8flTXk1LkMDN8Mv_kQ-kjJmhLZfX10fr1jhLVEtIS8QitKFGsYp_ev0YqQlja65eoCvSvlkdTqNH2LLmirOJekW6HfN4d9nB7SeIIhTrYAvvJzfIrzCW_ssUDBt9lOxcXBniDjbTzEsIyG5O0c04TjhHcpwIDtFPAGhgHvYHQVgfIeventUODDuV-iu2_Xt5sfzfbX95-bq23jO8nnxvWKSQLKBs6tEKLvW-21EF2guvVcc9a7vtNEBC9qB5AKiLakc1L4Ljh2ib4sdw85_TlCmc0Yi69Raoh0LEbWZwmXqoLrBfQ5lZKhN4ccR5tPhhLzT6ipQs2L0Lrw6Xz56EYIL_jZYAU-L8A-Puz_xgzGxeT3MJpWKsO0YZIKXTG1YFA1PEXIpvgIk4dQV_xsQor_i_AM23-Q1A</recordid><startdate>20030926</startdate><enddate>20030926</enddate><creator>Contreras, F.-Xabier</creator><creator>Villar, Ana-Victoria</creator><creator>Alonso, Alicia</creator><creator>Kolesnick, Richard N.</creator><creator>Goñi, Félix M.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20030926</creationdate><title>Sphingomyelinase Activity Causes Transbilayer Lipid Translocation in Model and Cell Membranes</title><author>Contreras, F.-Xabier ; Villar, Ana-Victoria ; Alonso, Alicia ; Kolesnick, Richard N. ; Goñi, Félix M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-bf8370e8ad55a666ff29c9664d192c5953fbf4906dc6f49ee78e09a04b76c4db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Biological Transport</topic><topic>Cell Membrane - metabolism</topic><topic>Erythrocyte Membrane - metabolism</topic><topic>Fluorescence Resonance Energy Transfer</topic><topic>Gangliosides - metabolism</topic><topic>Humans</topic><topic>Kinetics</topic><topic>Lipid Bilayers - metabolism</topic><topic>Membrane Lipids - metabolism</topic><topic>Sphingomyelin Phosphodiesterase - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Contreras, F.-Xabier</creatorcontrib><creatorcontrib>Villar, Ana-Victoria</creatorcontrib><creatorcontrib>Alonso, Alicia</creatorcontrib><creatorcontrib>Kolesnick, Richard N.</creatorcontrib><creatorcontrib>Goñi, Félix M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Contreras, F.-Xabier</au><au>Villar, Ana-Victoria</au><au>Alonso, Alicia</au><au>Kolesnick, Richard N.</au><au>Goñi, Félix M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sphingomyelinase Activity Causes Transbilayer Lipid Translocation in Model and Cell Membranes</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2003-09-26</date><risdate>2003</risdate><volume>278</volume><issue>39</issue><spage>37169</spage><epage>37174</epage><pages>37169-37174</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Ceramide is known to induce structural rearrangements in membrane bilayers, including the formation of ceramide-rich and -poor domains and the efflux of aqueous solutes. This report describes a novel effect of ceramide, namely the induction of transbilayer lipid movements. This effect was demonstrated in both model (large unilamellar vesicles) and cell (erythrocyte ghost) membranes in which ceramide generation took place in situ through the action of an externally added sphingomyelinase. Two different novel assays were developed to detect transbilayer lipid movement. One of the assays required the preparation of vesicles containing a ganglioside only in the outer monolayer and entrapped neuraminidase. Sphingomyelinase activity induced ganglioside hydrolysis under conditions in which no neuraminidase was released from the vesicles. The second assay involved the preparation of liposomes or erythrocyte ghosts labeled with a fluorescent energy donor in their inner leaflets. Sphingomyelin hydrolysis was accompanied by fluorescence energy transfer to an impermeable acceptor in the outer aqueous medium. Ceramide-induced transbilayer lipid movement is explained in terms of another well known property of ceramide, namely the facilitation of lamellar to non-lamellar lipid-phase transitions. Thus, sphingomyelinase generates ceramide on one side of the membrane; ceramide then induces the transient formation of non-lamellar structural intermediates, which cause the loss of lipid asymmetry in the bilayer, i.e. the transbilayer movement of ceramide together with other lipids. As direct targets for ceramide tend to be intracellular, these observations may be relevant to the mechanism of transmembrane signaling by means of the sphingomyelin pathway.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>12855704</pmid><doi>10.1074/jbc.M303206200</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2003-09, Vol.278 (39), p.37169-37174
issn 0021-9258
1083-351X
language eng
recordid cdi_proquest_miscellaneous_75700578
source MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Biological Transport
Cell Membrane - metabolism
Erythrocyte Membrane - metabolism
Fluorescence Resonance Energy Transfer
Gangliosides - metabolism
Humans
Kinetics
Lipid Bilayers - metabolism
Membrane Lipids - metabolism
Sphingomyelin Phosphodiesterase - metabolism
title Sphingomyelinase Activity Causes Transbilayer Lipid Translocation in Model and Cell Membranes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T01%3A21%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sphingomyelinase%20Activity%20Causes%20Transbilayer%20Lipid%20Translocation%20in%20Model%20and%20Cell%20Membranes&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Contreras,%20F.-Xabier&rft.date=2003-09-26&rft.volume=278&rft.issue=39&rft.spage=37169&rft.epage=37174&rft.pages=37169-37174&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M303206200&rft_dat=%3Cproquest_cross%3E75700578%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=75700578&rft_id=info:pmid/12855704&rft_els_id=S0021925820832724&rfr_iscdi=true