Cysteine desulfurase activity indicates a role for NIFS in metallocluster biosynthesis

Biological nitrogen fixation is catalyzed by nitrogenase, a complex metalloenzyme composed of two separately purifiable component proteins encoded by the structural genes nifH, nifD, and nifK. Deletion of the Azotobacter vinelandii nifS gene lowers the activities of both nitrogenase component protei...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1993-04, Vol.90 (7), p.2754-2758
Hauptverfasser: Zheng, L. (Virginia Polytechnic Institute and State University, Blacksburg, VA), White, R.H, Cash, V.L, Jack, R.F, Dean, D.R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2758
container_issue 7
container_start_page 2754
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 90
creator Zheng, L. (Virginia Polytechnic Institute and State University, Blacksburg, VA)
White, R.H
Cash, V.L
Jack, R.F
Dean, D.R
description Biological nitrogen fixation is catalyzed by nitrogenase, a complex metalloenzyme composed of two separately purifiable component proteins encoded by the structural genes nifH, nifD, and nifK. Deletion of the Azotobacter vinelandii nifS gene lowers the activities of both nitrogenase component proteins. Because both nitrogenase component proteins have metallocluster prosthetic groups that are composed of iron- and sulfur-containing cores, this result indicated that the nifS gene product could be involved in the mobilization of the iron or sulfur required for metallocluster formation. In the present work, it is shown that NIFS is a pyridoxal phosphate-containing homodimer that catalyzes the formation of L-alanine and elemental sulfur by using L-cysteine as substrate. NIFS activity is extremely sensitive to thiol-specific alkylating reagents, which indicates the participation of a cysteinyl thiolate at the active site. Based on these results we propose that an enzyme-bound cysteinyl persulfide that requires the release of the sulfur from the substrate L-cysteine for its formation ultimately provides the inorganic sulfide required for nitrogenase metallocluster formation. The recent discovery of nifS-like genes in non-nitrogen-fixing organisms also raises the possibility that the reaction catalyzed by NIFS represents a universal mechanism that involves pyridoxal phosphate chemistry, in the mobilization of the sulfur required for metallocluster formation.
doi_str_mv 10.1073/pnas.90.7.2754
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_75665388</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2361616</jstor_id><sourcerecordid>2361616</sourcerecordid><originalsourceid>FETCH-LOGICAL-c629t-257088d6bc3bd8221ee9cad3cc50a8afe8f8df71f0d5afc3c625a89159496dff3</originalsourceid><addsrcrecordid>eNqFkc1vEzEUxFcIVNLClQMCaYVQbwm2158SFxRRqFTBoZSr9eK1W0fOOrW9Ffnv6yghChxAPvgwvxm_52maVxjNMBLdh_UAeabQTMyIYPRJM8FI4SmnCj1tJggRMZWU0OfNac5LhJBiEp00J5JyKiWbND_nm1ysH2zb2zwGNybItgVT_IMvm9YPvTdQbG6hTTHY1sXUfru8uK5Ku7IFQogmjDUitQsf82Yodzb7_KJ55iBk-3J_nzU3F59_zL9Or75_uZx_upoaTlSZEiaQlD1fmG7RS0KwtcpA3xnDEEhwVjrZO4Ed6hk401UXA6kwU1Tx3rnurPm4y12Pi5XtjR1KgqDXya8gbXQEr_9UBn-nb-ODphwLWu3ne3uK96PNRa98NjYEGGwcsxaMc9ZJ-V8Qc6Zw3aWC7_4Cl3FMQ_0DTRAmnHPVVWi2g0yKOSfrDgNjpLet6m2rWiEt9LbVanh7vOYB39dY9fd7HbKB4BIMxucDRkUnMJNHMdv43-rxM-f_0rUbQyj2V6ngmx24zCWmA0k6juup8uud7CBquE11lJtrRTFGnHSPPdvWHw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201266693</pqid></control><display><type>article</type><title>Cysteine desulfurase activity indicates a role for NIFS in metallocluster biosynthesis</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Zheng, L. (Virginia Polytechnic Institute and State University, Blacksburg, VA) ; White, R.H ; Cash, V.L ; Jack, R.F ; Dean, D.R</creator><creatorcontrib>Zheng, L. (Virginia Polytechnic Institute and State University, Blacksburg, VA) ; White, R.H ; Cash, V.L ; Jack, R.F ; Dean, D.R</creatorcontrib><description>Biological nitrogen fixation is catalyzed by nitrogenase, a complex metalloenzyme composed of two separately purifiable component proteins encoded by the structural genes nifH, nifD, and nifK. Deletion of the Azotobacter vinelandii nifS gene lowers the activities of both nitrogenase component proteins. Because both nitrogenase component proteins have metallocluster prosthetic groups that are composed of iron- and sulfur-containing cores, this result indicated that the nifS gene product could be involved in the mobilization of the iron or sulfur required for metallocluster formation. In the present work, it is shown that NIFS is a pyridoxal phosphate-containing homodimer that catalyzes the formation of L-alanine and elemental sulfur by using L-cysteine as substrate. NIFS activity is extremely sensitive to thiol-specific alkylating reagents, which indicates the participation of a cysteinyl thiolate at the active site. Based on these results we propose that an enzyme-bound cysteinyl persulfide that requires the release of the sulfur from the substrate L-cysteine for its formation ultimately provides the inorganic sulfide required for nitrogenase metallocluster formation. The recent discovery of nifS-like genes in non-nitrogen-fixing organisms also raises the possibility that the reaction catalyzed by NIFS represents a universal mechanism that involves pyridoxal phosphate chemistry, in the mobilization of the sulfur required for metallocluster formation.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.90.7.2754</identifier><identifier>PMID: 8464885</identifier><identifier>CODEN: PNASA6</identifier><language>eng</language><publisher>Washington, DC: National Academy of Sciences of the United States of America</publisher><subject>ACTIVIDAD ENZIMATICA ; ACTIVITE ENZYMATIQUE ; Amino Acid Sequence ; Analytical, structural and metabolic biochemistry ; AZOTOBACTER VINELANDII ; Azotobacter vinelandii - enzymology ; Azotobacter vinelandii - genetics ; Bacteria ; BACTERIA FIJADORA DEL NITROGENO ; Bacterial Proteins - genetics ; Bacterial Proteins - isolation &amp; purification ; Bacterial Proteins - metabolism ; BACTERIE FIXATRICE DE L'AZOTE ; Biochemistry ; Biological and medical sciences ; BIOSINTESIS ; BIOSYNTHESE ; Carbon-Sulfur Lyases ; Chromatography, Ion Exchange ; Cloning, Molecular ; Cysteine - metabolism ; DNA, Bacterial - genetics ; DNA, Bacterial - isolation &amp; purification ; Enzymes ; Enzymes and enzyme inhibitors ; Escherichia coli - genetics ; Ethylmaleimide - pharmacology ; FLORA DEL SUELO ; FLORE DU SOL ; Fundamental and applied biological sciences. Psychology ; Genes ; Genes, Bacterial ; Hydrogen ; Iron ; Kinetics ; Lyases - metabolism ; METALLOPROTEINE ; METALPROTEINAS ; Miscellaneous ; Molecular Sequence Data ; Molecular Weight ; Multigene Family ; Nitrogen Fixation - genetics ; Phosphates ; Proteins ; Sequence Homology, Amino Acid ; Spectrophotometry ; Sulfates ; Sulfides ; Sulfur</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1993-04, Vol.90 (7), p.2754-2758</ispartof><rights>Copyright 1993 The National Academy of Sciences of the United States of America</rights><rights>1993 INIST-CNRS</rights><rights>Copyright National Academy of Sciences Apr 1, 1993</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c629t-257088d6bc3bd8221ee9cad3cc50a8afe8f8df71f0d5afc3c625a89159496dff3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/90/7.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2361616$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2361616$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4737158$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8464885$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zheng, L. (Virginia Polytechnic Institute and State University, Blacksburg, VA)</creatorcontrib><creatorcontrib>White, R.H</creatorcontrib><creatorcontrib>Cash, V.L</creatorcontrib><creatorcontrib>Jack, R.F</creatorcontrib><creatorcontrib>Dean, D.R</creatorcontrib><title>Cysteine desulfurase activity indicates a role for NIFS in metallocluster biosynthesis</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Biological nitrogen fixation is catalyzed by nitrogenase, a complex metalloenzyme composed of two separately purifiable component proteins encoded by the structural genes nifH, nifD, and nifK. Deletion of the Azotobacter vinelandii nifS gene lowers the activities of both nitrogenase component proteins. Because both nitrogenase component proteins have metallocluster prosthetic groups that are composed of iron- and sulfur-containing cores, this result indicated that the nifS gene product could be involved in the mobilization of the iron or sulfur required for metallocluster formation. In the present work, it is shown that NIFS is a pyridoxal phosphate-containing homodimer that catalyzes the formation of L-alanine and elemental sulfur by using L-cysteine as substrate. NIFS activity is extremely sensitive to thiol-specific alkylating reagents, which indicates the participation of a cysteinyl thiolate at the active site. Based on these results we propose that an enzyme-bound cysteinyl persulfide that requires the release of the sulfur from the substrate L-cysteine for its formation ultimately provides the inorganic sulfide required for nitrogenase metallocluster formation. The recent discovery of nifS-like genes in non-nitrogen-fixing organisms also raises the possibility that the reaction catalyzed by NIFS represents a universal mechanism that involves pyridoxal phosphate chemistry, in the mobilization of the sulfur required for metallocluster formation.</description><subject>ACTIVIDAD ENZIMATICA</subject><subject>ACTIVITE ENZYMATIQUE</subject><subject>Amino Acid Sequence</subject><subject>Analytical, structural and metabolic biochemistry</subject><subject>AZOTOBACTER VINELANDII</subject><subject>Azotobacter vinelandii - enzymology</subject><subject>Azotobacter vinelandii - genetics</subject><subject>Bacteria</subject><subject>BACTERIA FIJADORA DEL NITROGENO</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - isolation &amp; purification</subject><subject>Bacterial Proteins - metabolism</subject><subject>BACTERIE FIXATRICE DE L'AZOTE</subject><subject>Biochemistry</subject><subject>Biological and medical sciences</subject><subject>BIOSINTESIS</subject><subject>BIOSYNTHESE</subject><subject>Carbon-Sulfur Lyases</subject><subject>Chromatography, Ion Exchange</subject><subject>Cloning, Molecular</subject><subject>Cysteine - metabolism</subject><subject>DNA, Bacterial - genetics</subject><subject>DNA, Bacterial - isolation &amp; purification</subject><subject>Enzymes</subject><subject>Enzymes and enzyme inhibitors</subject><subject>Escherichia coli - genetics</subject><subject>Ethylmaleimide - pharmacology</subject><subject>FLORA DEL SUELO</subject><subject>FLORE DU SOL</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genes</subject><subject>Genes, Bacterial</subject><subject>Hydrogen</subject><subject>Iron</subject><subject>Kinetics</subject><subject>Lyases - metabolism</subject><subject>METALLOPROTEINE</subject><subject>METALPROTEINAS</subject><subject>Miscellaneous</subject><subject>Molecular Sequence Data</subject><subject>Molecular Weight</subject><subject>Multigene Family</subject><subject>Nitrogen Fixation - genetics</subject><subject>Phosphates</subject><subject>Proteins</subject><subject>Sequence Homology, Amino Acid</subject><subject>Spectrophotometry</subject><subject>Sulfates</subject><subject>Sulfides</subject><subject>Sulfur</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1vEzEUxFcIVNLClQMCaYVQbwm2158SFxRRqFTBoZSr9eK1W0fOOrW9Ffnv6yghChxAPvgwvxm_52maVxjNMBLdh_UAeabQTMyIYPRJM8FI4SmnCj1tJggRMZWU0OfNac5LhJBiEp00J5JyKiWbND_nm1ysH2zb2zwGNybItgVT_IMvm9YPvTdQbG6hTTHY1sXUfru8uK5Ku7IFQogmjDUitQsf82Yodzb7_KJ55iBk-3J_nzU3F59_zL9Or75_uZx_upoaTlSZEiaQlD1fmG7RS0KwtcpA3xnDEEhwVjrZO4Ed6hk401UXA6kwU1Tx3rnurPm4y12Pi5XtjR1KgqDXya8gbXQEr_9UBn-nb-ODphwLWu3ne3uK96PNRa98NjYEGGwcsxaMc9ZJ-V8Qc6Zw3aWC7_4Cl3FMQ_0DTRAmnHPVVWi2g0yKOSfrDgNjpLet6m2rWiEt9LbVanh7vOYB39dY9fd7HbKB4BIMxucDRkUnMJNHMdv43-rxM-f_0rUbQyj2V6ngmx24zCWmA0k6juup8uud7CBquE11lJtrRTFGnHSPPdvWHw</recordid><startdate>19930401</startdate><enddate>19930401</enddate><creator>Zheng, L. (Virginia Polytechnic Institute and State University, Blacksburg, VA)</creator><creator>White, R.H</creator><creator>Cash, V.L</creator><creator>Jack, R.F</creator><creator>Dean, D.R</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19930401</creationdate><title>Cysteine desulfurase activity indicates a role for NIFS in metallocluster biosynthesis</title><author>Zheng, L. (Virginia Polytechnic Institute and State University, Blacksburg, VA) ; White, R.H ; Cash, V.L ; Jack, R.F ; Dean, D.R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c629t-257088d6bc3bd8221ee9cad3cc50a8afe8f8df71f0d5afc3c625a89159496dff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>ACTIVIDAD ENZIMATICA</topic><topic>ACTIVITE ENZYMATIQUE</topic><topic>Amino Acid Sequence</topic><topic>Analytical, structural and metabolic biochemistry</topic><topic>AZOTOBACTER VINELANDII</topic><topic>Azotobacter vinelandii - enzymology</topic><topic>Azotobacter vinelandii - genetics</topic><topic>Bacteria</topic><topic>BACTERIA FIJADORA DEL NITROGENO</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - isolation &amp; purification</topic><topic>Bacterial Proteins - metabolism</topic><topic>BACTERIE FIXATRICE DE L'AZOTE</topic><topic>Biochemistry</topic><topic>Biological and medical sciences</topic><topic>BIOSINTESIS</topic><topic>BIOSYNTHESE</topic><topic>Carbon-Sulfur Lyases</topic><topic>Chromatography, Ion Exchange</topic><topic>Cloning, Molecular</topic><topic>Cysteine - metabolism</topic><topic>DNA, Bacterial - genetics</topic><topic>DNA, Bacterial - isolation &amp; purification</topic><topic>Enzymes</topic><topic>Enzymes and enzyme inhibitors</topic><topic>Escherichia coli - genetics</topic><topic>Ethylmaleimide - pharmacology</topic><topic>FLORA DEL SUELO</topic><topic>FLORE DU SOL</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genes</topic><topic>Genes, Bacterial</topic><topic>Hydrogen</topic><topic>Iron</topic><topic>Kinetics</topic><topic>Lyases - metabolism</topic><topic>METALLOPROTEINE</topic><topic>METALPROTEINAS</topic><topic>Miscellaneous</topic><topic>Molecular Sequence Data</topic><topic>Molecular Weight</topic><topic>Multigene Family</topic><topic>Nitrogen Fixation - genetics</topic><topic>Phosphates</topic><topic>Proteins</topic><topic>Sequence Homology, Amino Acid</topic><topic>Spectrophotometry</topic><topic>Sulfates</topic><topic>Sulfides</topic><topic>Sulfur</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, L. (Virginia Polytechnic Institute and State University, Blacksburg, VA)</creatorcontrib><creatorcontrib>White, R.H</creatorcontrib><creatorcontrib>Cash, V.L</creatorcontrib><creatorcontrib>Jack, R.F</creatorcontrib><creatorcontrib>Dean, D.R</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, L. (Virginia Polytechnic Institute and State University, Blacksburg, VA)</au><au>White, R.H</au><au>Cash, V.L</au><au>Jack, R.F</au><au>Dean, D.R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cysteine desulfurase activity indicates a role for NIFS in metallocluster biosynthesis</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1993-04-01</date><risdate>1993</risdate><volume>90</volume><issue>7</issue><spage>2754</spage><epage>2758</epage><pages>2754-2758</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><coden>PNASA6</coden><abstract>Biological nitrogen fixation is catalyzed by nitrogenase, a complex metalloenzyme composed of two separately purifiable component proteins encoded by the structural genes nifH, nifD, and nifK. Deletion of the Azotobacter vinelandii nifS gene lowers the activities of both nitrogenase component proteins. Because both nitrogenase component proteins have metallocluster prosthetic groups that are composed of iron- and sulfur-containing cores, this result indicated that the nifS gene product could be involved in the mobilization of the iron or sulfur required for metallocluster formation. In the present work, it is shown that NIFS is a pyridoxal phosphate-containing homodimer that catalyzes the formation of L-alanine and elemental sulfur by using L-cysteine as substrate. NIFS activity is extremely sensitive to thiol-specific alkylating reagents, which indicates the participation of a cysteinyl thiolate at the active site. Based on these results we propose that an enzyme-bound cysteinyl persulfide that requires the release of the sulfur from the substrate L-cysteine for its formation ultimately provides the inorganic sulfide required for nitrogenase metallocluster formation. The recent discovery of nifS-like genes in non-nitrogen-fixing organisms also raises the possibility that the reaction catalyzed by NIFS represents a universal mechanism that involves pyridoxal phosphate chemistry, in the mobilization of the sulfur required for metallocluster formation.</abstract><cop>Washington, DC</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>8464885</pmid><doi>10.1073/pnas.90.7.2754</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 1993-04, Vol.90 (7), p.2754-2758
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_75665388
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects ACTIVIDAD ENZIMATICA
ACTIVITE ENZYMATIQUE
Amino Acid Sequence
Analytical, structural and metabolic biochemistry
AZOTOBACTER VINELANDII
Azotobacter vinelandii - enzymology
Azotobacter vinelandii - genetics
Bacteria
BACTERIA FIJADORA DEL NITROGENO
Bacterial Proteins - genetics
Bacterial Proteins - isolation & purification
Bacterial Proteins - metabolism
BACTERIE FIXATRICE DE L'AZOTE
Biochemistry
Biological and medical sciences
BIOSINTESIS
BIOSYNTHESE
Carbon-Sulfur Lyases
Chromatography, Ion Exchange
Cloning, Molecular
Cysteine - metabolism
DNA, Bacterial - genetics
DNA, Bacterial - isolation & purification
Enzymes
Enzymes and enzyme inhibitors
Escherichia coli - genetics
Ethylmaleimide - pharmacology
FLORA DEL SUELO
FLORE DU SOL
Fundamental and applied biological sciences. Psychology
Genes
Genes, Bacterial
Hydrogen
Iron
Kinetics
Lyases - metabolism
METALLOPROTEINE
METALPROTEINAS
Miscellaneous
Molecular Sequence Data
Molecular Weight
Multigene Family
Nitrogen Fixation - genetics
Phosphates
Proteins
Sequence Homology, Amino Acid
Spectrophotometry
Sulfates
Sulfides
Sulfur
title Cysteine desulfurase activity indicates a role for NIFS in metallocluster biosynthesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T12%3A14%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cysteine%20desulfurase%20activity%20indicates%20a%20role%20for%20NIFS%20in%20metallocluster%20biosynthesis&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Zheng,%20L.%20(Virginia%20Polytechnic%20Institute%20and%20State%20University,%20Blacksburg,%20VA)&rft.date=1993-04-01&rft.volume=90&rft.issue=7&rft.spage=2754&rft.epage=2758&rft.pages=2754-2758&rft.issn=0027-8424&rft.eissn=1091-6490&rft.coden=PNASA6&rft_id=info:doi/10.1073/pnas.90.7.2754&rft_dat=%3Cjstor_proqu%3E2361616%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201266693&rft_id=info:pmid/8464885&rft_jstor_id=2361616&rfr_iscdi=true