Amplitude filter and Zernike polynomial expansion method for quality control of microlens arrays
This paper deals with a computer simulation and an experimental realization of an optical setup for automatic quality control of microlens arrays. The method is based on a 4f coherent light correlator setup with an amplitude filter placed in the Fourier plane. The output intensity signal is proporti...
Gespeichert in:
Veröffentlicht in: | Applied Optics 2010-10, Vol.49 (28), p.5486-5492 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5492 |
---|---|
container_issue | 28 |
container_start_page | 5486 |
container_title | Applied Optics |
container_volume | 49 |
creator | Kasztelanic, Rafał |
description | This paper deals with a computer simulation and an experimental realization of an optical setup for automatic quality control of microlens arrays. The method is based on a 4f coherent light correlator setup with an amplitude filter placed in the Fourier plane. The output intensity signal is proportional to the first derivative of the distortion of the input wavefront. An analysis can be carried out with the use of the Zernike polynomial expansion method. It must be carried out separately for each lens, but it allows for a more precise, quantitative assessment of their quality. What is important is that the analysis is computer-based and performed on the basis of the initial single optical measurement. |
doi_str_mv | 10.1364/AO.49.005486 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_756308683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>756308683</sourcerecordid><originalsourceid>FETCH-LOGICAL-c290t-c1b0e477094614dfa57697ac49d7c5852d20327803ad36daf09dff8eb00d79f23</originalsourceid><addsrcrecordid>eNo9kD1PwzAQhi0EoqWwMSNvLKRc4u-xQnxJlbrAwhLc2BaGJE7tRCL_nqAWpruTnvfV6UHoModlTji9XW2WVC0BGJX8CM2LnLGM5JwdozkAkIwrwmboLKXP6WJUiVM0K0DKiRdz9L5qutr3g7HY-bq3EevW4DcbW_9lcRfqsQ2N1zW2351ukw8tbmz_EQx2IeLdoKfwiKvQ9jHUODjc-GrabJuwjlGP6RydOF0ne3GYC_T6cP9y95StN4_Pd6t1VhUK-qzKt2CpEKAoz6lxmgmuhK6oMqJikhWmAFIICUQbwo12oIxz0m4BjFCuIAt0ve_tYtgNNvVl41Nl61q3NgypFIwTkFySibzZk9OjKUXryi76RsexzKH8VVquNiVV5V7phF8diodtY80__OeQ_AAxn3Ka</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>756308683</pqid></control><display><type>article</type><title>Amplitude filter and Zernike polynomial expansion method for quality control of microlens arrays</title><source>Alma/SFX Local Collection</source><source>Optica Publishing Group Journals</source><creator>Kasztelanic, Rafał</creator><creatorcontrib>Kasztelanic, Rafał</creatorcontrib><description>This paper deals with a computer simulation and an experimental realization of an optical setup for automatic quality control of microlens arrays. The method is based on a 4f coherent light correlator setup with an amplitude filter placed in the Fourier plane. The output intensity signal is proportional to the first derivative of the distortion of the input wavefront. An analysis can be carried out with the use of the Zernike polynomial expansion method. It must be carried out separately for each lens, but it allows for a more precise, quantitative assessment of their quality. What is important is that the analysis is computer-based and performed on the basis of the initial single optical measurement.</description><identifier>ISSN: 0003-6935</identifier><identifier>EISSN: 2155-3165</identifier><identifier>EISSN: 1539-4522</identifier><identifier>DOI: 10.1364/AO.49.005486</identifier><identifier>PMID: 20885487</identifier><language>eng</language><publisher>United States</publisher><ispartof>Applied Optics, 2010-10, Vol.49 (28), p.5486-5492</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c290t-c1b0e477094614dfa57697ac49d7c5852d20327803ad36daf09dff8eb00d79f23</citedby><cites>FETCH-LOGICAL-c290t-c1b0e477094614dfa57697ac49d7c5852d20327803ad36daf09dff8eb00d79f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20885487$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kasztelanic, Rafał</creatorcontrib><title>Amplitude filter and Zernike polynomial expansion method for quality control of microlens arrays</title><title>Applied Optics</title><addtitle>Appl Opt</addtitle><description>This paper deals with a computer simulation and an experimental realization of an optical setup for automatic quality control of microlens arrays. The method is based on a 4f coherent light correlator setup with an amplitude filter placed in the Fourier plane. The output intensity signal is proportional to the first derivative of the distortion of the input wavefront. An analysis can be carried out with the use of the Zernike polynomial expansion method. It must be carried out separately for each lens, but it allows for a more precise, quantitative assessment of their quality. What is important is that the analysis is computer-based and performed on the basis of the initial single optical measurement.</description><issn>0003-6935</issn><issn>2155-3165</issn><issn>1539-4522</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNo9kD1PwzAQhi0EoqWwMSNvLKRc4u-xQnxJlbrAwhLc2BaGJE7tRCL_nqAWpruTnvfV6UHoModlTji9XW2WVC0BGJX8CM2LnLGM5JwdozkAkIwrwmboLKXP6WJUiVM0K0DKiRdz9L5qutr3g7HY-bq3EevW4DcbW_9lcRfqsQ2N1zW2351ukw8tbmz_EQx2IeLdoKfwiKvQ9jHUODjc-GrabJuwjlGP6RydOF0ne3GYC_T6cP9y95StN4_Pd6t1VhUK-qzKt2CpEKAoz6lxmgmuhK6oMqJikhWmAFIICUQbwo12oIxz0m4BjFCuIAt0ve_tYtgNNvVl41Nl61q3NgypFIwTkFySibzZk9OjKUXryi76RsexzKH8VVquNiVV5V7phF8diodtY80__OeQ_AAxn3Ka</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Kasztelanic, Rafał</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20101001</creationdate><title>Amplitude filter and Zernike polynomial expansion method for quality control of microlens arrays</title><author>Kasztelanic, Rafał</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c290t-c1b0e477094614dfa57697ac49d7c5852d20327803ad36daf09dff8eb00d79f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kasztelanic, Rafał</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Applied Optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kasztelanic, Rafał</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Amplitude filter and Zernike polynomial expansion method for quality control of microlens arrays</atitle><jtitle>Applied Optics</jtitle><addtitle>Appl Opt</addtitle><date>2010-10-01</date><risdate>2010</risdate><volume>49</volume><issue>28</issue><spage>5486</spage><epage>5492</epage><pages>5486-5492</pages><issn>0003-6935</issn><eissn>2155-3165</eissn><eissn>1539-4522</eissn><abstract>This paper deals with a computer simulation and an experimental realization of an optical setup for automatic quality control of microlens arrays. The method is based on a 4f coherent light correlator setup with an amplitude filter placed in the Fourier plane. The output intensity signal is proportional to the first derivative of the distortion of the input wavefront. An analysis can be carried out with the use of the Zernike polynomial expansion method. It must be carried out separately for each lens, but it allows for a more precise, quantitative assessment of their quality. What is important is that the analysis is computer-based and performed on the basis of the initial single optical measurement.</abstract><cop>United States</cop><pmid>20885487</pmid><doi>10.1364/AO.49.005486</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6935 |
ispartof | Applied Optics, 2010-10, Vol.49 (28), p.5486-5492 |
issn | 0003-6935 2155-3165 1539-4522 |
language | eng |
recordid | cdi_proquest_miscellaneous_756308683 |
source | Alma/SFX Local Collection; Optica Publishing Group Journals |
title | Amplitude filter and Zernike polynomial expansion method for quality control of microlens arrays |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A43%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Amplitude%20filter%20and%20Zernike%20polynomial%20expansion%20method%20for%20quality%20control%20of%20microlens%20arrays&rft.jtitle=Applied%20Optics&rft.au=Kasztelanic,%20Rafa%C5%82&rft.date=2010-10-01&rft.volume=49&rft.issue=28&rft.spage=5486&rft.epage=5492&rft.pages=5486-5492&rft.issn=0003-6935&rft.eissn=2155-3165&rft_id=info:doi/10.1364/AO.49.005486&rft_dat=%3Cproquest_cross%3E756308683%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=756308683&rft_id=info:pmid/20885487&rfr_iscdi=true |