Amplitude filter and Zernike polynomial expansion method for quality control of microlens arrays

This paper deals with a computer simulation and an experimental realization of an optical setup for automatic quality control of microlens arrays. The method is based on a 4f coherent light correlator setup with an amplitude filter placed in the Fourier plane. The output intensity signal is proporti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Optics 2010-10, Vol.49 (28), p.5486-5492
1. Verfasser: Kasztelanic, Rafał
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5492
container_issue 28
container_start_page 5486
container_title Applied Optics
container_volume 49
creator Kasztelanic, Rafał
description This paper deals with a computer simulation and an experimental realization of an optical setup for automatic quality control of microlens arrays. The method is based on a 4f coherent light correlator setup with an amplitude filter placed in the Fourier plane. The output intensity signal is proportional to the first derivative of the distortion of the input wavefront. An analysis can be carried out with the use of the Zernike polynomial expansion method. It must be carried out separately for each lens, but it allows for a more precise, quantitative assessment of their quality. What is important is that the analysis is computer-based and performed on the basis of the initial single optical measurement.
doi_str_mv 10.1364/AO.49.005486
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_756308683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>756308683</sourcerecordid><originalsourceid>FETCH-LOGICAL-c290t-c1b0e477094614dfa57697ac49d7c5852d20327803ad36daf09dff8eb00d79f23</originalsourceid><addsrcrecordid>eNo9kD1PwzAQhi0EoqWwMSNvLKRc4u-xQnxJlbrAwhLc2BaGJE7tRCL_nqAWpruTnvfV6UHoModlTji9XW2WVC0BGJX8CM2LnLGM5JwdozkAkIwrwmboLKXP6WJUiVM0K0DKiRdz9L5qutr3g7HY-bq3EevW4DcbW_9lcRfqsQ2N1zW2351ukw8tbmz_EQx2IeLdoKfwiKvQ9jHUODjc-GrabJuwjlGP6RydOF0ne3GYC_T6cP9y95StN4_Pd6t1VhUK-qzKt2CpEKAoz6lxmgmuhK6oMqJikhWmAFIICUQbwo12oIxz0m4BjFCuIAt0ve_tYtgNNvVl41Nl61q3NgypFIwTkFySibzZk9OjKUXryi76RsexzKH8VVquNiVV5V7phF8diodtY80__OeQ_AAxn3Ka</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>756308683</pqid></control><display><type>article</type><title>Amplitude filter and Zernike polynomial expansion method for quality control of microlens arrays</title><source>Alma/SFX Local Collection</source><source>Optica Publishing Group Journals</source><creator>Kasztelanic, Rafał</creator><creatorcontrib>Kasztelanic, Rafał</creatorcontrib><description>This paper deals with a computer simulation and an experimental realization of an optical setup for automatic quality control of microlens arrays. The method is based on a 4f coherent light correlator setup with an amplitude filter placed in the Fourier plane. The output intensity signal is proportional to the first derivative of the distortion of the input wavefront. An analysis can be carried out with the use of the Zernike polynomial expansion method. It must be carried out separately for each lens, but it allows for a more precise, quantitative assessment of their quality. What is important is that the analysis is computer-based and performed on the basis of the initial single optical measurement.</description><identifier>ISSN: 0003-6935</identifier><identifier>EISSN: 2155-3165</identifier><identifier>EISSN: 1539-4522</identifier><identifier>DOI: 10.1364/AO.49.005486</identifier><identifier>PMID: 20885487</identifier><language>eng</language><publisher>United States</publisher><ispartof>Applied Optics, 2010-10, Vol.49 (28), p.5486-5492</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c290t-c1b0e477094614dfa57697ac49d7c5852d20327803ad36daf09dff8eb00d79f23</citedby><cites>FETCH-LOGICAL-c290t-c1b0e477094614dfa57697ac49d7c5852d20327803ad36daf09dff8eb00d79f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20885487$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kasztelanic, Rafał</creatorcontrib><title>Amplitude filter and Zernike polynomial expansion method for quality control of microlens arrays</title><title>Applied Optics</title><addtitle>Appl Opt</addtitle><description>This paper deals with a computer simulation and an experimental realization of an optical setup for automatic quality control of microlens arrays. The method is based on a 4f coherent light correlator setup with an amplitude filter placed in the Fourier plane. The output intensity signal is proportional to the first derivative of the distortion of the input wavefront. An analysis can be carried out with the use of the Zernike polynomial expansion method. It must be carried out separately for each lens, but it allows for a more precise, quantitative assessment of their quality. What is important is that the analysis is computer-based and performed on the basis of the initial single optical measurement.</description><issn>0003-6935</issn><issn>2155-3165</issn><issn>1539-4522</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNo9kD1PwzAQhi0EoqWwMSNvLKRc4u-xQnxJlbrAwhLc2BaGJE7tRCL_nqAWpruTnvfV6UHoModlTji9XW2WVC0BGJX8CM2LnLGM5JwdozkAkIwrwmboLKXP6WJUiVM0K0DKiRdz9L5qutr3g7HY-bq3EevW4DcbW_9lcRfqsQ2N1zW2351ukw8tbmz_EQx2IeLdoKfwiKvQ9jHUODjc-GrabJuwjlGP6RydOF0ne3GYC_T6cP9y95StN4_Pd6t1VhUK-qzKt2CpEKAoz6lxmgmuhK6oMqJikhWmAFIICUQbwo12oIxz0m4BjFCuIAt0ve_tYtgNNvVl41Nl61q3NgypFIwTkFySibzZk9OjKUXryi76RsexzKH8VVquNiVV5V7phF8diodtY80__OeQ_AAxn3Ka</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Kasztelanic, Rafał</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20101001</creationdate><title>Amplitude filter and Zernike polynomial expansion method for quality control of microlens arrays</title><author>Kasztelanic, Rafał</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c290t-c1b0e477094614dfa57697ac49d7c5852d20327803ad36daf09dff8eb00d79f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kasztelanic, Rafał</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Applied Optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kasztelanic, Rafał</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Amplitude filter and Zernike polynomial expansion method for quality control of microlens arrays</atitle><jtitle>Applied Optics</jtitle><addtitle>Appl Opt</addtitle><date>2010-10-01</date><risdate>2010</risdate><volume>49</volume><issue>28</issue><spage>5486</spage><epage>5492</epage><pages>5486-5492</pages><issn>0003-6935</issn><eissn>2155-3165</eissn><eissn>1539-4522</eissn><abstract>This paper deals with a computer simulation and an experimental realization of an optical setup for automatic quality control of microlens arrays. The method is based on a 4f coherent light correlator setup with an amplitude filter placed in the Fourier plane. The output intensity signal is proportional to the first derivative of the distortion of the input wavefront. An analysis can be carried out with the use of the Zernike polynomial expansion method. It must be carried out separately for each lens, but it allows for a more precise, quantitative assessment of their quality. What is important is that the analysis is computer-based and performed on the basis of the initial single optical measurement.</abstract><cop>United States</cop><pmid>20885487</pmid><doi>10.1364/AO.49.005486</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-6935
ispartof Applied Optics, 2010-10, Vol.49 (28), p.5486-5492
issn 0003-6935
2155-3165
1539-4522
language eng
recordid cdi_proquest_miscellaneous_756308683
source Alma/SFX Local Collection; Optica Publishing Group Journals
title Amplitude filter and Zernike polynomial expansion method for quality control of microlens arrays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A43%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Amplitude%20filter%20and%20Zernike%20polynomial%20expansion%20method%20for%20quality%20control%20of%20microlens%20arrays&rft.jtitle=Applied%20Optics&rft.au=Kasztelanic,%20Rafa%C5%82&rft.date=2010-10-01&rft.volume=49&rft.issue=28&rft.spage=5486&rft.epage=5492&rft.pages=5486-5492&rft.issn=0003-6935&rft.eissn=2155-3165&rft_id=info:doi/10.1364/AO.49.005486&rft_dat=%3Cproquest_cross%3E756308683%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=756308683&rft_id=info:pmid/20885487&rfr_iscdi=true