Binding of Ethanol on Calcite: The Role of the OH Bond and Its Relevance to Biomineralization
The interaction of OH-containing compounds with calcite, CaCO3, such as is required for the processes that control biomineralization, has been investigated in a low-water solution. We used ethanol (EtOH) as a simple, model, OH-containing organic compound, and observed the strength of its adsorption...
Gespeichert in:
Veröffentlicht in: | Langmuir 2010-10, Vol.26 (19), p.15239-15247 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15247 |
---|---|
container_issue | 19 |
container_start_page | 15239 |
container_title | Langmuir |
container_volume | 26 |
creator | Sand, K. K Yang, M Makovicky, E Cooke, D. J Hassenkam, T Bechgaard, K Stipp, S. L. S |
description | The interaction of OH-containing compounds with calcite, CaCO3, such as is required for the processes that control biomineralization, has been investigated in a low-water solution. We used ethanol (EtOH) as a simple, model, OH-containing organic compound, and observed the strength of its adsorption on calcite relative to OH from water and the consequences of the differences in interaction on crystal growth and dissolution. A combination of atomic force microscopy (AFM) and molecular dynamics (MD) simulations showed that EtOH attachment on calcite is stronger than HOH binding and that the first adsorbed layer of ethanol is highly ordered. The strong ordering of the ethanol molecules has important implications for mineral growth and dissolution because it produces a hydrophobic layer. Ethanol ordering is disturbed along steps and at defect sites, providing a bridge from the bulk solution to the surface. The strong influence of calcite in structuring ethanol extends further into the liquid than expected from electrical double-layer theory. This suggests that in fluids where water activity is low, such as in biological systems optimized for biomineralization, organic molecules can control ion transport to and from the mineral surface, confining it to specific locations, thus providing the organism with control for biomineral morphology. |
doi_str_mv | 10.1021/la101136j |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_755969516</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>755969516</sourcerecordid><originalsourceid>FETCH-LOGICAL-a410t-58e3dfa3af069473168399bdc414515a460405f103ad02dbca6fba2cc58fc6553</originalsourceid><addsrcrecordid>eNptkE1LAzEQhoMoWqsH_4DkIuKhOtl87K43W9QKQqHUoyzTbKIpaaKbraC_3lVrvXgYZmAeZl4eQo4YnDPI2IVHBoxxtdgiPSYzGMgiy7dJD3LBB7lQfI_sp7QAgJKLcpfsZVCwTJXQI49DF2oXnmi09Lp9xhA9jYGO0GvXmks6ezZ0Gr352rfdPBnTYQw1xa7u2kSnxps3DNrQNtKhi0sXTIPefWDrYjggOxZ9Mofr3icPN9ez0XhwP7m9G13dD1AwaLu4htcWOVpQpcg5UwUvy3mtBROSSRQKBEjLgGMNWT3XqOwcM61lYbWSkvfJ6c_dlya-rkxqq6VL2niPwcRVqnIpS1VKpjry7IfUTUypMbZ6adwSm_eKQfUls9rI7Njj9dXVfGnqDflrrwNO1gAmjd42nQiX_jieFaL4jrfmUKdqEVdN6GT88_AT-JWGDw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>755969516</pqid></control><display><type>article</type><title>Binding of Ethanol on Calcite: The Role of the OH Bond and Its Relevance to Biomineralization</title><source>ACS Publications</source><source>MEDLINE</source><creator>Sand, K. K ; Yang, M ; Makovicky, E ; Cooke, D. J ; Hassenkam, T ; Bechgaard, K ; Stipp, S. L. S</creator><creatorcontrib>Sand, K. K ; Yang, M ; Makovicky, E ; Cooke, D. J ; Hassenkam, T ; Bechgaard, K ; Stipp, S. L. S</creatorcontrib><description>The interaction of OH-containing compounds with calcite, CaCO3, such as is required for the processes that control biomineralization, has been investigated in a low-water solution. We used ethanol (EtOH) as a simple, model, OH-containing organic compound, and observed the strength of its adsorption on calcite relative to OH from water and the consequences of the differences in interaction on crystal growth and dissolution. A combination of atomic force microscopy (AFM) and molecular dynamics (MD) simulations showed that EtOH attachment on calcite is stronger than HOH binding and that the first adsorbed layer of ethanol is highly ordered. The strong ordering of the ethanol molecules has important implications for mineral growth and dissolution because it produces a hydrophobic layer. Ethanol ordering is disturbed along steps and at defect sites, providing a bridge from the bulk solution to the surface. The strong influence of calcite in structuring ethanol extends further into the liquid than expected from electrical double-layer theory. This suggests that in fluids where water activity is low, such as in biological systems optimized for biomineralization, organic molecules can control ion transport to and from the mineral surface, confining it to specific locations, thus providing the organism with control for biomineral morphology.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la101136j</identifier><identifier>PMID: 20812690</identifier><identifier>CODEN: LANGD5</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Adsorption ; Calcium Carbonate - chemistry ; Chemistry ; Ethanol - chemistry ; Exact sciences and technology ; General and physical chemistry ; Interfaces: Adsorption, Reactions, Films, Forces ; Microscopy, Atomic Force ; Minerals - chemistry ; Molecular Dynamics Simulation ; Surface physical chemistry</subject><ispartof>Langmuir, 2010-10, Vol.26 (19), p.15239-15247</ispartof><rights>Copyright © 2010 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a410t-58e3dfa3af069473168399bdc414515a460405f103ad02dbca6fba2cc58fc6553</citedby><cites>FETCH-LOGICAL-a410t-58e3dfa3af069473168399bdc414515a460405f103ad02dbca6fba2cc58fc6553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/la101136j$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/la101136j$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23284855$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20812690$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sand, K. K</creatorcontrib><creatorcontrib>Yang, M</creatorcontrib><creatorcontrib>Makovicky, E</creatorcontrib><creatorcontrib>Cooke, D. J</creatorcontrib><creatorcontrib>Hassenkam, T</creatorcontrib><creatorcontrib>Bechgaard, K</creatorcontrib><creatorcontrib>Stipp, S. L. S</creatorcontrib><title>Binding of Ethanol on Calcite: The Role of the OH Bond and Its Relevance to Biomineralization</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>The interaction of OH-containing compounds with calcite, CaCO3, such as is required for the processes that control biomineralization, has been investigated in a low-water solution. We used ethanol (EtOH) as a simple, model, OH-containing organic compound, and observed the strength of its adsorption on calcite relative to OH from water and the consequences of the differences in interaction on crystal growth and dissolution. A combination of atomic force microscopy (AFM) and molecular dynamics (MD) simulations showed that EtOH attachment on calcite is stronger than HOH binding and that the first adsorbed layer of ethanol is highly ordered. The strong ordering of the ethanol molecules has important implications for mineral growth and dissolution because it produces a hydrophobic layer. Ethanol ordering is disturbed along steps and at defect sites, providing a bridge from the bulk solution to the surface. The strong influence of calcite in structuring ethanol extends further into the liquid than expected from electrical double-layer theory. This suggests that in fluids where water activity is low, such as in biological systems optimized for biomineralization, organic molecules can control ion transport to and from the mineral surface, confining it to specific locations, thus providing the organism with control for biomineral morphology.</description><subject>Adsorption</subject><subject>Calcium Carbonate - chemistry</subject><subject>Chemistry</subject><subject>Ethanol - chemistry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Interfaces: Adsorption, Reactions, Films, Forces</subject><subject>Microscopy, Atomic Force</subject><subject>Minerals - chemistry</subject><subject>Molecular Dynamics Simulation</subject><subject>Surface physical chemistry</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkE1LAzEQhoMoWqsH_4DkIuKhOtl87K43W9QKQqHUoyzTbKIpaaKbraC_3lVrvXgYZmAeZl4eQo4YnDPI2IVHBoxxtdgiPSYzGMgiy7dJD3LBB7lQfI_sp7QAgJKLcpfsZVCwTJXQI49DF2oXnmi09Lp9xhA9jYGO0GvXmks6ezZ0Gr352rfdPBnTYQw1xa7u2kSnxps3DNrQNtKhi0sXTIPefWDrYjggOxZ9Mofr3icPN9ez0XhwP7m9G13dD1AwaLu4htcWOVpQpcg5UwUvy3mtBROSSRQKBEjLgGMNWT3XqOwcM61lYbWSkvfJ6c_dlya-rkxqq6VL2niPwcRVqnIpS1VKpjry7IfUTUypMbZ6adwSm_eKQfUls9rI7Njj9dXVfGnqDflrrwNO1gAmjd42nQiX_jieFaL4jrfmUKdqEVdN6GT88_AT-JWGDw</recordid><startdate>20101005</startdate><enddate>20101005</enddate><creator>Sand, K. K</creator><creator>Yang, M</creator><creator>Makovicky, E</creator><creator>Cooke, D. J</creator><creator>Hassenkam, T</creator><creator>Bechgaard, K</creator><creator>Stipp, S. L. S</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20101005</creationdate><title>Binding of Ethanol on Calcite: The Role of the OH Bond and Its Relevance to Biomineralization</title><author>Sand, K. K ; Yang, M ; Makovicky, E ; Cooke, D. J ; Hassenkam, T ; Bechgaard, K ; Stipp, S. L. S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a410t-58e3dfa3af069473168399bdc414515a460405f103ad02dbca6fba2cc58fc6553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adsorption</topic><topic>Calcium Carbonate - chemistry</topic><topic>Chemistry</topic><topic>Ethanol - chemistry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Interfaces: Adsorption, Reactions, Films, Forces</topic><topic>Microscopy, Atomic Force</topic><topic>Minerals - chemistry</topic><topic>Molecular Dynamics Simulation</topic><topic>Surface physical chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sand, K. K</creatorcontrib><creatorcontrib>Yang, M</creatorcontrib><creatorcontrib>Makovicky, E</creatorcontrib><creatorcontrib>Cooke, D. J</creatorcontrib><creatorcontrib>Hassenkam, T</creatorcontrib><creatorcontrib>Bechgaard, K</creatorcontrib><creatorcontrib>Stipp, S. L. S</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sand, K. K</au><au>Yang, M</au><au>Makovicky, E</au><au>Cooke, D. J</au><au>Hassenkam, T</au><au>Bechgaard, K</au><au>Stipp, S. L. S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Binding of Ethanol on Calcite: The Role of the OH Bond and Its Relevance to Biomineralization</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2010-10-05</date><risdate>2010</risdate><volume>26</volume><issue>19</issue><spage>15239</spage><epage>15247</epage><pages>15239-15247</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><coden>LANGD5</coden><abstract>The interaction of OH-containing compounds with calcite, CaCO3, such as is required for the processes that control biomineralization, has been investigated in a low-water solution. We used ethanol (EtOH) as a simple, model, OH-containing organic compound, and observed the strength of its adsorption on calcite relative to OH from water and the consequences of the differences in interaction on crystal growth and dissolution. A combination of atomic force microscopy (AFM) and molecular dynamics (MD) simulations showed that EtOH attachment on calcite is stronger than HOH binding and that the first adsorbed layer of ethanol is highly ordered. The strong ordering of the ethanol molecules has important implications for mineral growth and dissolution because it produces a hydrophobic layer. Ethanol ordering is disturbed along steps and at defect sites, providing a bridge from the bulk solution to the surface. The strong influence of calcite in structuring ethanol extends further into the liquid than expected from electrical double-layer theory. This suggests that in fluids where water activity is low, such as in biological systems optimized for biomineralization, organic molecules can control ion transport to and from the mineral surface, confining it to specific locations, thus providing the organism with control for biomineral morphology.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>20812690</pmid><doi>10.1021/la101136j</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0743-7463 |
ispartof | Langmuir, 2010-10, Vol.26 (19), p.15239-15247 |
issn | 0743-7463 1520-5827 |
language | eng |
recordid | cdi_proquest_miscellaneous_755969516 |
source | ACS Publications; MEDLINE |
subjects | Adsorption Calcium Carbonate - chemistry Chemistry Ethanol - chemistry Exact sciences and technology General and physical chemistry Interfaces: Adsorption, Reactions, Films, Forces Microscopy, Atomic Force Minerals - chemistry Molecular Dynamics Simulation Surface physical chemistry |
title | Binding of Ethanol on Calcite: The Role of the OH Bond and Its Relevance to Biomineralization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T05%3A39%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Binding%20of%20Ethanol%20on%20Calcite:%20The%20Role%20of%20the%20OH%20Bond%20and%20Its%20Relevance%20to%20Biomineralization&rft.jtitle=Langmuir&rft.au=Sand,%20K.%20K&rft.date=2010-10-05&rft.volume=26&rft.issue=19&rft.spage=15239&rft.epage=15247&rft.pages=15239-15247&rft.issn=0743-7463&rft.eissn=1520-5827&rft.coden=LANGD5&rft_id=info:doi/10.1021/la101136j&rft_dat=%3Cproquest_cross%3E755969516%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=755969516&rft_id=info:pmid/20812690&rfr_iscdi=true |