Binding of Ethanol on Calcite: The Role of the OH Bond and Its Relevance to Biomineralization

The interaction of OH-containing compounds with calcite, CaCO3, such as is required for the processes that control biomineralization, has been investigated in a low-water solution. We used ethanol (EtOH) as a simple, model, OH-containing organic compound, and observed the strength of its adsorption...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2010-10, Vol.26 (19), p.15239-15247
Hauptverfasser: Sand, K. K, Yang, M, Makovicky, E, Cooke, D. J, Hassenkam, T, Bechgaard, K, Stipp, S. L. S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15247
container_issue 19
container_start_page 15239
container_title Langmuir
container_volume 26
creator Sand, K. K
Yang, M
Makovicky, E
Cooke, D. J
Hassenkam, T
Bechgaard, K
Stipp, S. L. S
description The interaction of OH-containing compounds with calcite, CaCO3, such as is required for the processes that control biomineralization, has been investigated in a low-water solution. We used ethanol (EtOH) as a simple, model, OH-containing organic compound, and observed the strength of its adsorption on calcite relative to OH from water and the consequences of the differences in interaction on crystal growth and dissolution. A combination of atomic force microscopy (AFM) and molecular dynamics (MD) simulations showed that EtOH attachment on calcite is stronger than HOH binding and that the first adsorbed layer of ethanol is highly ordered. The strong ordering of the ethanol molecules has important implications for mineral growth and dissolution because it produces a hydrophobic layer. Ethanol ordering is disturbed along steps and at defect sites, providing a bridge from the bulk solution to the surface. The strong influence of calcite in structuring ethanol extends further into the liquid than expected from electrical double-layer theory. This suggests that in fluids where water activity is low, such as in biological systems optimized for biomineralization, organic molecules can control ion transport to and from the mineral surface, confining it to specific locations, thus providing the organism with control for biomineral morphology.
doi_str_mv 10.1021/la101136j
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_755969516</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>755969516</sourcerecordid><originalsourceid>FETCH-LOGICAL-a410t-58e3dfa3af069473168399bdc414515a460405f103ad02dbca6fba2cc58fc6553</originalsourceid><addsrcrecordid>eNptkE1LAzEQhoMoWqsH_4DkIuKhOtl87K43W9QKQqHUoyzTbKIpaaKbraC_3lVrvXgYZmAeZl4eQo4YnDPI2IVHBoxxtdgiPSYzGMgiy7dJD3LBB7lQfI_sp7QAgJKLcpfsZVCwTJXQI49DF2oXnmi09Lp9xhA9jYGO0GvXmks6ezZ0Gr352rfdPBnTYQw1xa7u2kSnxps3DNrQNtKhi0sXTIPefWDrYjggOxZ9Mofr3icPN9ez0XhwP7m9G13dD1AwaLu4htcWOVpQpcg5UwUvy3mtBROSSRQKBEjLgGMNWT3XqOwcM61lYbWSkvfJ6c_dlya-rkxqq6VL2niPwcRVqnIpS1VKpjry7IfUTUypMbZ6adwSm_eKQfUls9rI7Njj9dXVfGnqDflrrwNO1gAmjd42nQiX_jieFaL4jrfmUKdqEVdN6GT88_AT-JWGDw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>755969516</pqid></control><display><type>article</type><title>Binding of Ethanol on Calcite: The Role of the OH Bond and Its Relevance to Biomineralization</title><source>ACS Publications</source><source>MEDLINE</source><creator>Sand, K. K ; Yang, M ; Makovicky, E ; Cooke, D. J ; Hassenkam, T ; Bechgaard, K ; Stipp, S. L. S</creator><creatorcontrib>Sand, K. K ; Yang, M ; Makovicky, E ; Cooke, D. J ; Hassenkam, T ; Bechgaard, K ; Stipp, S. L. S</creatorcontrib><description>The interaction of OH-containing compounds with calcite, CaCO3, such as is required for the processes that control biomineralization, has been investigated in a low-water solution. We used ethanol (EtOH) as a simple, model, OH-containing organic compound, and observed the strength of its adsorption on calcite relative to OH from water and the consequences of the differences in interaction on crystal growth and dissolution. A combination of atomic force microscopy (AFM) and molecular dynamics (MD) simulations showed that EtOH attachment on calcite is stronger than HOH binding and that the first adsorbed layer of ethanol is highly ordered. The strong ordering of the ethanol molecules has important implications for mineral growth and dissolution because it produces a hydrophobic layer. Ethanol ordering is disturbed along steps and at defect sites, providing a bridge from the bulk solution to the surface. The strong influence of calcite in structuring ethanol extends further into the liquid than expected from electrical double-layer theory. This suggests that in fluids where water activity is low, such as in biological systems optimized for biomineralization, organic molecules can control ion transport to and from the mineral surface, confining it to specific locations, thus providing the organism with control for biomineral morphology.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la101136j</identifier><identifier>PMID: 20812690</identifier><identifier>CODEN: LANGD5</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Adsorption ; Calcium Carbonate - chemistry ; Chemistry ; Ethanol - chemistry ; Exact sciences and technology ; General and physical chemistry ; Interfaces: Adsorption, Reactions, Films, Forces ; Microscopy, Atomic Force ; Minerals - chemistry ; Molecular Dynamics Simulation ; Surface physical chemistry</subject><ispartof>Langmuir, 2010-10, Vol.26 (19), p.15239-15247</ispartof><rights>Copyright © 2010 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a410t-58e3dfa3af069473168399bdc414515a460405f103ad02dbca6fba2cc58fc6553</citedby><cites>FETCH-LOGICAL-a410t-58e3dfa3af069473168399bdc414515a460405f103ad02dbca6fba2cc58fc6553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/la101136j$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/la101136j$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23284855$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20812690$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sand, K. K</creatorcontrib><creatorcontrib>Yang, M</creatorcontrib><creatorcontrib>Makovicky, E</creatorcontrib><creatorcontrib>Cooke, D. J</creatorcontrib><creatorcontrib>Hassenkam, T</creatorcontrib><creatorcontrib>Bechgaard, K</creatorcontrib><creatorcontrib>Stipp, S. L. S</creatorcontrib><title>Binding of Ethanol on Calcite: The Role of the OH Bond and Its Relevance to Biomineralization</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>The interaction of OH-containing compounds with calcite, CaCO3, such as is required for the processes that control biomineralization, has been investigated in a low-water solution. We used ethanol (EtOH) as a simple, model, OH-containing organic compound, and observed the strength of its adsorption on calcite relative to OH from water and the consequences of the differences in interaction on crystal growth and dissolution. A combination of atomic force microscopy (AFM) and molecular dynamics (MD) simulations showed that EtOH attachment on calcite is stronger than HOH binding and that the first adsorbed layer of ethanol is highly ordered. The strong ordering of the ethanol molecules has important implications for mineral growth and dissolution because it produces a hydrophobic layer. Ethanol ordering is disturbed along steps and at defect sites, providing a bridge from the bulk solution to the surface. The strong influence of calcite in structuring ethanol extends further into the liquid than expected from electrical double-layer theory. This suggests that in fluids where water activity is low, such as in biological systems optimized for biomineralization, organic molecules can control ion transport to and from the mineral surface, confining it to specific locations, thus providing the organism with control for biomineral morphology.</description><subject>Adsorption</subject><subject>Calcium Carbonate - chemistry</subject><subject>Chemistry</subject><subject>Ethanol - chemistry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Interfaces: Adsorption, Reactions, Films, Forces</subject><subject>Microscopy, Atomic Force</subject><subject>Minerals - chemistry</subject><subject>Molecular Dynamics Simulation</subject><subject>Surface physical chemistry</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkE1LAzEQhoMoWqsH_4DkIuKhOtl87K43W9QKQqHUoyzTbKIpaaKbraC_3lVrvXgYZmAeZl4eQo4YnDPI2IVHBoxxtdgiPSYzGMgiy7dJD3LBB7lQfI_sp7QAgJKLcpfsZVCwTJXQI49DF2oXnmi09Lp9xhA9jYGO0GvXmks6ezZ0Gr352rfdPBnTYQw1xa7u2kSnxps3DNrQNtKhi0sXTIPefWDrYjggOxZ9Mofr3icPN9ez0XhwP7m9G13dD1AwaLu4htcWOVpQpcg5UwUvy3mtBROSSRQKBEjLgGMNWT3XqOwcM61lYbWSkvfJ6c_dlya-rkxqq6VL2niPwcRVqnIpS1VKpjry7IfUTUypMbZ6adwSm_eKQfUls9rI7Njj9dXVfGnqDflrrwNO1gAmjd42nQiX_jieFaL4jrfmUKdqEVdN6GT88_AT-JWGDw</recordid><startdate>20101005</startdate><enddate>20101005</enddate><creator>Sand, K. K</creator><creator>Yang, M</creator><creator>Makovicky, E</creator><creator>Cooke, D. J</creator><creator>Hassenkam, T</creator><creator>Bechgaard, K</creator><creator>Stipp, S. L. S</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20101005</creationdate><title>Binding of Ethanol on Calcite: The Role of the OH Bond and Its Relevance to Biomineralization</title><author>Sand, K. K ; Yang, M ; Makovicky, E ; Cooke, D. J ; Hassenkam, T ; Bechgaard, K ; Stipp, S. L. S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a410t-58e3dfa3af069473168399bdc414515a460405f103ad02dbca6fba2cc58fc6553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adsorption</topic><topic>Calcium Carbonate - chemistry</topic><topic>Chemistry</topic><topic>Ethanol - chemistry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Interfaces: Adsorption, Reactions, Films, Forces</topic><topic>Microscopy, Atomic Force</topic><topic>Minerals - chemistry</topic><topic>Molecular Dynamics Simulation</topic><topic>Surface physical chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sand, K. K</creatorcontrib><creatorcontrib>Yang, M</creatorcontrib><creatorcontrib>Makovicky, E</creatorcontrib><creatorcontrib>Cooke, D. J</creatorcontrib><creatorcontrib>Hassenkam, T</creatorcontrib><creatorcontrib>Bechgaard, K</creatorcontrib><creatorcontrib>Stipp, S. L. S</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sand, K. K</au><au>Yang, M</au><au>Makovicky, E</au><au>Cooke, D. J</au><au>Hassenkam, T</au><au>Bechgaard, K</au><au>Stipp, S. L. S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Binding of Ethanol on Calcite: The Role of the OH Bond and Its Relevance to Biomineralization</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2010-10-05</date><risdate>2010</risdate><volume>26</volume><issue>19</issue><spage>15239</spage><epage>15247</epage><pages>15239-15247</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><coden>LANGD5</coden><abstract>The interaction of OH-containing compounds with calcite, CaCO3, such as is required for the processes that control biomineralization, has been investigated in a low-water solution. We used ethanol (EtOH) as a simple, model, OH-containing organic compound, and observed the strength of its adsorption on calcite relative to OH from water and the consequences of the differences in interaction on crystal growth and dissolution. A combination of atomic force microscopy (AFM) and molecular dynamics (MD) simulations showed that EtOH attachment on calcite is stronger than HOH binding and that the first adsorbed layer of ethanol is highly ordered. The strong ordering of the ethanol molecules has important implications for mineral growth and dissolution because it produces a hydrophobic layer. Ethanol ordering is disturbed along steps and at defect sites, providing a bridge from the bulk solution to the surface. The strong influence of calcite in structuring ethanol extends further into the liquid than expected from electrical double-layer theory. This suggests that in fluids where water activity is low, such as in biological systems optimized for biomineralization, organic molecules can control ion transport to and from the mineral surface, confining it to specific locations, thus providing the organism with control for biomineral morphology.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>20812690</pmid><doi>10.1021/la101136j</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2010-10, Vol.26 (19), p.15239-15247
issn 0743-7463
1520-5827
language eng
recordid cdi_proquest_miscellaneous_755969516
source ACS Publications; MEDLINE
subjects Adsorption
Calcium Carbonate - chemistry
Chemistry
Ethanol - chemistry
Exact sciences and technology
General and physical chemistry
Interfaces: Adsorption, Reactions, Films, Forces
Microscopy, Atomic Force
Minerals - chemistry
Molecular Dynamics Simulation
Surface physical chemistry
title Binding of Ethanol on Calcite: The Role of the OH Bond and Its Relevance to Biomineralization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T05%3A39%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Binding%20of%20Ethanol%20on%20Calcite:%20The%20Role%20of%20the%20OH%20Bond%20and%20Its%20Relevance%20to%20Biomineralization&rft.jtitle=Langmuir&rft.au=Sand,%20K.%20K&rft.date=2010-10-05&rft.volume=26&rft.issue=19&rft.spage=15239&rft.epage=15247&rft.pages=15239-15247&rft.issn=0743-7463&rft.eissn=1520-5827&rft.coden=LANGD5&rft_id=info:doi/10.1021/la101136j&rft_dat=%3Cproquest_cross%3E755969516%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=755969516&rft_id=info:pmid/20812690&rfr_iscdi=true