Fluorimetric measurements and chromatin condensation patterns of nuclei from 3T3 cells throughout G1

Using two cytological methods based on nuclear morphology, quinacrine dihydrochloride (QDH) staining and premature chromosome condensation (PCC), it has been possible to identify cell cyle positions within G1 of growing and arrested 3T3 cells. The fluorescent intensity of QDH‐stained interphase cell...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cellular physiology 1981-02, Vol.106 (2), p.293-301
Hauptverfasser: Moser, Gertrude C., Fallon, Robert J., Meiss, Harriet K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 301
container_issue 2
container_start_page 293
container_title Journal of cellular physiology
container_volume 106
creator Moser, Gertrude C.
Fallon, Robert J.
Meiss, Harriet K.
description Using two cytological methods based on nuclear morphology, quinacrine dihydrochloride (QDH) staining and premature chromosome condensation (PCC), it has been possible to identify cell cyle positions within G1 of growing and arrested 3T3 cells. The fluorescent intensity of QDH‐stained interphase cells appears to decrease as the cells pass from mitosis to S phase. Likewise, the length and thickness of prematurely condensed chromatids can be related to the cells' position within the G1 period. Data are presented that deal with three interrelated topics: (1) We determined by fluorometric measurements of nuclei from 3T3 cells that the visual observation of the decrease in QDH fluorescence during G1 reflects an actual decrease in total fluorescence and not a dispersion of the fluorescent chromatin in a larger nuclear area. (2) We correlated the results obtained by QDH staining with those of PCC on the same cell samples blocked in G1 by different conditions. Serum‐starved and contact‐inhibited cell nuclei had the highest intensity, hydroxyurea‐treated ones had the lowest intensity, while that of isoleucine‐deprived cells was in between. The same relative order of G1 positions was obtained based on PCC morphology. Thus, both methods monitor the state of chromatin condensation and can be used to identify cell cycle position within G1.(3) We showed with both methods that the states of chromatin resulting from the various G1 blocking conditions differ from each other.
doi_str_mv 10.1002/jcp.1041060216
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_75593508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>75593508</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3786-fc632e4a503430796a4bbe3bd203eb243141c9fe336c811e83b5a41bf85ca6e13</originalsourceid><addsrcrecordid>eNqFkE1P3DAQhi3UCpaPa29IPvUWamdsJznSVVla0cJhUXuzHGdSAom9tR0B_x6jXVH1VMmSR5rnfTV6CPnA2RlnrPx0bzd5EJwpVnK1RxacNVUhlCzfkUUGeNFIwQ_IYYz3jLGmAdgn-1XJ85ML0l2Msw_DhCkMlk5o4hxwQpciNa6j9i74yaTBUetdhy7m2Tu6MSlhcJH6nrrZjjjQPoMU1kAtjmOkKQfn33d-TnTFj8n73owRT3b_Ebm9-LJeXhZX16uvy_OrwkJVq6K3CkoURjIQwKpGGdG2CG1XMsC2FMAFt02PAMrWnGMNrTSCt30trVHI4Yh83PZugv8zY0x6GuLrPcahn6OupGxAsjqDZ1vQBh9jwF5vsgMTnjVn-lWrzlr1X605cLprntsJuzd85zHvm-3-cRjx-T9t-tvy5p_uYpsdYsKnt6wJD1pVUEn988dKf-eff91ItdYKXgAhLJN-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>75593508</pqid></control><display><type>article</type><title>Fluorimetric measurements and chromatin condensation patterns of nuclei from 3T3 cells throughout G1</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Moser, Gertrude C. ; Fallon, Robert J. ; Meiss, Harriet K.</creator><creatorcontrib>Moser, Gertrude C. ; Fallon, Robert J. ; Meiss, Harriet K.</creatorcontrib><description>Using two cytological methods based on nuclear morphology, quinacrine dihydrochloride (QDH) staining and premature chromosome condensation (PCC), it has been possible to identify cell cyle positions within G1 of growing and arrested 3T3 cells. The fluorescent intensity of QDH‐stained interphase cells appears to decrease as the cells pass from mitosis to S phase. Likewise, the length and thickness of prematurely condensed chromatids can be related to the cells' position within the G1 period. Data are presented that deal with three interrelated topics: (1) We determined by fluorometric measurements of nuclei from 3T3 cells that the visual observation of the decrease in QDH fluorescence during G1 reflects an actual decrease in total fluorescence and not a dispersion of the fluorescent chromatin in a larger nuclear area. (2) We correlated the results obtained by QDH staining with those of PCC on the same cell samples blocked in G1 by different conditions. Serum‐starved and contact‐inhibited cell nuclei had the highest intensity, hydroxyurea‐treated ones had the lowest intensity, while that of isoleucine‐deprived cells was in between. The same relative order of G1 positions was obtained based on PCC morphology. Thus, both methods monitor the state of chromatin condensation and can be used to identify cell cycle position within G1.(3) We showed with both methods that the states of chromatin resulting from the various G1 blocking conditions differ from each other.</description><identifier>ISSN: 0021-9541</identifier><identifier>EISSN: 1097-4652</identifier><identifier>DOI: 10.1002/jcp.1041060216</identifier><identifier>PMID: 7217215</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Animals ; Cell Fusion ; Cells, Cultured ; Chromatin - ultrastructure ; Contact Inhibition ; Culture Media ; Hydroxyurea - pharmacology ; Interphase ; Isoleucine - deficiency ; Mice ; Microscopy, Fluorescence ; Mitosis ; Quinacrine</subject><ispartof>Journal of cellular physiology, 1981-02, Vol.106 (2), p.293-301</ispartof><rights>Copyright © 1981 Wiley‐Liss, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3786-fc632e4a503430796a4bbe3bd203eb243141c9fe336c811e83b5a41bf85ca6e13</citedby><cites>FETCH-LOGICAL-c3786-fc632e4a503430796a4bbe3bd203eb243141c9fe336c811e83b5a41bf85ca6e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcp.1041060216$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcp.1041060216$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/7217215$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Moser, Gertrude C.</creatorcontrib><creatorcontrib>Fallon, Robert J.</creatorcontrib><creatorcontrib>Meiss, Harriet K.</creatorcontrib><title>Fluorimetric measurements and chromatin condensation patterns of nuclei from 3T3 cells throughout G1</title><title>Journal of cellular physiology</title><addtitle>J. Cell. Physiol</addtitle><description>Using two cytological methods based on nuclear morphology, quinacrine dihydrochloride (QDH) staining and premature chromosome condensation (PCC), it has been possible to identify cell cyle positions within G1 of growing and arrested 3T3 cells. The fluorescent intensity of QDH‐stained interphase cells appears to decrease as the cells pass from mitosis to S phase. Likewise, the length and thickness of prematurely condensed chromatids can be related to the cells' position within the G1 period. Data are presented that deal with three interrelated topics: (1) We determined by fluorometric measurements of nuclei from 3T3 cells that the visual observation of the decrease in QDH fluorescence during G1 reflects an actual decrease in total fluorescence and not a dispersion of the fluorescent chromatin in a larger nuclear area. (2) We correlated the results obtained by QDH staining with those of PCC on the same cell samples blocked in G1 by different conditions. Serum‐starved and contact‐inhibited cell nuclei had the highest intensity, hydroxyurea‐treated ones had the lowest intensity, while that of isoleucine‐deprived cells was in between. The same relative order of G1 positions was obtained based on PCC morphology. Thus, both methods monitor the state of chromatin condensation and can be used to identify cell cycle position within G1.(3) We showed with both methods that the states of chromatin resulting from the various G1 blocking conditions differ from each other.</description><subject>Animals</subject><subject>Cell Fusion</subject><subject>Cells, Cultured</subject><subject>Chromatin - ultrastructure</subject><subject>Contact Inhibition</subject><subject>Culture Media</subject><subject>Hydroxyurea - pharmacology</subject><subject>Interphase</subject><subject>Isoleucine - deficiency</subject><subject>Mice</subject><subject>Microscopy, Fluorescence</subject><subject>Mitosis</subject><subject>Quinacrine</subject><issn>0021-9541</issn><issn>1097-4652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1981</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1P3DAQhi3UCpaPa29IPvUWamdsJznSVVla0cJhUXuzHGdSAom9tR0B_x6jXVH1VMmSR5rnfTV6CPnA2RlnrPx0bzd5EJwpVnK1RxacNVUhlCzfkUUGeNFIwQ_IYYz3jLGmAdgn-1XJ85ML0l2Msw_DhCkMlk5o4hxwQpciNa6j9i74yaTBUetdhy7m2Tu6MSlhcJH6nrrZjjjQPoMU1kAtjmOkKQfn33d-TnTFj8n73owRT3b_Ebm9-LJeXhZX16uvy_OrwkJVq6K3CkoURjIQwKpGGdG2CG1XMsC2FMAFt02PAMrWnGMNrTSCt30trVHI4Yh83PZugv8zY0x6GuLrPcahn6OupGxAsjqDZ1vQBh9jwF5vsgMTnjVn-lWrzlr1X605cLprntsJuzd85zHvm-3-cRjx-T9t-tvy5p_uYpsdYsKnt6wJD1pVUEn988dKf-eff91ItdYKXgAhLJN-</recordid><startdate>198102</startdate><enddate>198102</enddate><creator>Moser, Gertrude C.</creator><creator>Fallon, Robert J.</creator><creator>Meiss, Harriet K.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>198102</creationdate><title>Fluorimetric measurements and chromatin condensation patterns of nuclei from 3T3 cells throughout G1</title><author>Moser, Gertrude C. ; Fallon, Robert J. ; Meiss, Harriet K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3786-fc632e4a503430796a4bbe3bd203eb243141c9fe336c811e83b5a41bf85ca6e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1981</creationdate><topic>Animals</topic><topic>Cell Fusion</topic><topic>Cells, Cultured</topic><topic>Chromatin - ultrastructure</topic><topic>Contact Inhibition</topic><topic>Culture Media</topic><topic>Hydroxyurea - pharmacology</topic><topic>Interphase</topic><topic>Isoleucine - deficiency</topic><topic>Mice</topic><topic>Microscopy, Fluorescence</topic><topic>Mitosis</topic><topic>Quinacrine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moser, Gertrude C.</creatorcontrib><creatorcontrib>Fallon, Robert J.</creatorcontrib><creatorcontrib>Meiss, Harriet K.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of cellular physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moser, Gertrude C.</au><au>Fallon, Robert J.</au><au>Meiss, Harriet K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fluorimetric measurements and chromatin condensation patterns of nuclei from 3T3 cells throughout G1</atitle><jtitle>Journal of cellular physiology</jtitle><addtitle>J. Cell. Physiol</addtitle><date>1981-02</date><risdate>1981</risdate><volume>106</volume><issue>2</issue><spage>293</spage><epage>301</epage><pages>293-301</pages><issn>0021-9541</issn><eissn>1097-4652</eissn><abstract>Using two cytological methods based on nuclear morphology, quinacrine dihydrochloride (QDH) staining and premature chromosome condensation (PCC), it has been possible to identify cell cyle positions within G1 of growing and arrested 3T3 cells. The fluorescent intensity of QDH‐stained interphase cells appears to decrease as the cells pass from mitosis to S phase. Likewise, the length and thickness of prematurely condensed chromatids can be related to the cells' position within the G1 period. Data are presented that deal with three interrelated topics: (1) We determined by fluorometric measurements of nuclei from 3T3 cells that the visual observation of the decrease in QDH fluorescence during G1 reflects an actual decrease in total fluorescence and not a dispersion of the fluorescent chromatin in a larger nuclear area. (2) We correlated the results obtained by QDH staining with those of PCC on the same cell samples blocked in G1 by different conditions. Serum‐starved and contact‐inhibited cell nuclei had the highest intensity, hydroxyurea‐treated ones had the lowest intensity, while that of isoleucine‐deprived cells was in between. The same relative order of G1 positions was obtained based on PCC morphology. Thus, both methods monitor the state of chromatin condensation and can be used to identify cell cycle position within G1.(3) We showed with both methods that the states of chromatin resulting from the various G1 blocking conditions differ from each other.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>7217215</pmid><doi>10.1002/jcp.1041060216</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9541
ispartof Journal of cellular physiology, 1981-02, Vol.106 (2), p.293-301
issn 0021-9541
1097-4652
language eng
recordid cdi_proquest_miscellaneous_75593508
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
Cell Fusion
Cells, Cultured
Chromatin - ultrastructure
Contact Inhibition
Culture Media
Hydroxyurea - pharmacology
Interphase
Isoleucine - deficiency
Mice
Microscopy, Fluorescence
Mitosis
Quinacrine
title Fluorimetric measurements and chromatin condensation patterns of nuclei from 3T3 cells throughout G1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T15%3A45%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fluorimetric%20measurements%20and%20chromatin%20condensation%20patterns%20of%20nuclei%20from%203T3%20cells%20throughout%20G1&rft.jtitle=Journal%20of%20cellular%20physiology&rft.au=Moser,%20Gertrude%20C.&rft.date=1981-02&rft.volume=106&rft.issue=2&rft.spage=293&rft.epage=301&rft.pages=293-301&rft.issn=0021-9541&rft.eissn=1097-4652&rft_id=info:doi/10.1002/jcp.1041060216&rft_dat=%3Cproquest_cross%3E75593508%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=75593508&rft_id=info:pmid/7217215&rfr_iscdi=true