Fluorimetric measurements and chromatin condensation patterns of nuclei from 3T3 cells throughout G1
Using two cytological methods based on nuclear morphology, quinacrine dihydrochloride (QDH) staining and premature chromosome condensation (PCC), it has been possible to identify cell cyle positions within G1 of growing and arrested 3T3 cells. The fluorescent intensity of QDH‐stained interphase cell...
Gespeichert in:
Veröffentlicht in: | Journal of cellular physiology 1981-02, Vol.106 (2), p.293-301 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 301 |
---|---|
container_issue | 2 |
container_start_page | 293 |
container_title | Journal of cellular physiology |
container_volume | 106 |
creator | Moser, Gertrude C. Fallon, Robert J. Meiss, Harriet K. |
description | Using two cytological methods based on nuclear morphology, quinacrine dihydrochloride (QDH) staining and premature chromosome condensation (PCC), it has been possible to identify cell cyle positions within G1 of growing and arrested 3T3 cells. The fluorescent intensity of QDH‐stained interphase cells appears to decrease as the cells pass from mitosis to S phase. Likewise, the length and thickness of prematurely condensed chromatids can be related to the cells' position within the G1 period. Data are presented that deal with three interrelated topics: (1) We determined by fluorometric measurements of nuclei from 3T3 cells that the visual observation of the decrease in QDH fluorescence during G1 reflects an actual decrease in total fluorescence and not a dispersion of the fluorescent chromatin in a larger nuclear area. (2) We correlated the results obtained by QDH staining with those of PCC on the same cell samples blocked in G1 by different conditions. Serum‐starved and contact‐inhibited cell nuclei had the highest intensity, hydroxyurea‐treated ones had the lowest intensity, while that of isoleucine‐deprived cells was in between. The same relative order of G1 positions was obtained based on PCC morphology. Thus, both methods monitor the state of chromatin condensation and can be used to identify cell cycle position within G1.(3) We showed with both methods that the states of chromatin resulting from the various G1 blocking conditions differ from each other. |
doi_str_mv | 10.1002/jcp.1041060216 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_75593508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>75593508</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3786-fc632e4a503430796a4bbe3bd203eb243141c9fe336c811e83b5a41bf85ca6e13</originalsourceid><addsrcrecordid>eNqFkE1P3DAQhi3UCpaPa29IPvUWamdsJznSVVla0cJhUXuzHGdSAom9tR0B_x6jXVH1VMmSR5rnfTV6CPnA2RlnrPx0bzd5EJwpVnK1RxacNVUhlCzfkUUGeNFIwQ_IYYz3jLGmAdgn-1XJ85ML0l2Msw_DhCkMlk5o4hxwQpciNa6j9i74yaTBUetdhy7m2Tu6MSlhcJH6nrrZjjjQPoMU1kAtjmOkKQfn33d-TnTFj8n73owRT3b_Ebm9-LJeXhZX16uvy_OrwkJVq6K3CkoURjIQwKpGGdG2CG1XMsC2FMAFt02PAMrWnGMNrTSCt30trVHI4Yh83PZugv8zY0x6GuLrPcahn6OupGxAsjqDZ1vQBh9jwF5vsgMTnjVn-lWrzlr1X605cLprntsJuzd85zHvm-3-cRjx-T9t-tvy5p_uYpsdYsKnt6wJD1pVUEn988dKf-eff91ItdYKXgAhLJN-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>75593508</pqid></control><display><type>article</type><title>Fluorimetric measurements and chromatin condensation patterns of nuclei from 3T3 cells throughout G1</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Moser, Gertrude C. ; Fallon, Robert J. ; Meiss, Harriet K.</creator><creatorcontrib>Moser, Gertrude C. ; Fallon, Robert J. ; Meiss, Harriet K.</creatorcontrib><description>Using two cytological methods based on nuclear morphology, quinacrine dihydrochloride (QDH) staining and premature chromosome condensation (PCC), it has been possible to identify cell cyle positions within G1 of growing and arrested 3T3 cells. The fluorescent intensity of QDH‐stained interphase cells appears to decrease as the cells pass from mitosis to S phase. Likewise, the length and thickness of prematurely condensed chromatids can be related to the cells' position within the G1 period. Data are presented that deal with three interrelated topics: (1) We determined by fluorometric measurements of nuclei from 3T3 cells that the visual observation of the decrease in QDH fluorescence during G1 reflects an actual decrease in total fluorescence and not a dispersion of the fluorescent chromatin in a larger nuclear area. (2) We correlated the results obtained by QDH staining with those of PCC on the same cell samples blocked in G1 by different conditions. Serum‐starved and contact‐inhibited cell nuclei had the highest intensity, hydroxyurea‐treated ones had the lowest intensity, while that of isoleucine‐deprived cells was in between. The same relative order of G1 positions was obtained based on PCC morphology. Thus, both methods monitor the state of chromatin condensation and can be used to identify cell cycle position within G1.(3) We showed with both methods that the states of chromatin resulting from the various G1 blocking conditions differ from each other.</description><identifier>ISSN: 0021-9541</identifier><identifier>EISSN: 1097-4652</identifier><identifier>DOI: 10.1002/jcp.1041060216</identifier><identifier>PMID: 7217215</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Animals ; Cell Fusion ; Cells, Cultured ; Chromatin - ultrastructure ; Contact Inhibition ; Culture Media ; Hydroxyurea - pharmacology ; Interphase ; Isoleucine - deficiency ; Mice ; Microscopy, Fluorescence ; Mitosis ; Quinacrine</subject><ispartof>Journal of cellular physiology, 1981-02, Vol.106 (2), p.293-301</ispartof><rights>Copyright © 1981 Wiley‐Liss, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3786-fc632e4a503430796a4bbe3bd203eb243141c9fe336c811e83b5a41bf85ca6e13</citedby><cites>FETCH-LOGICAL-c3786-fc632e4a503430796a4bbe3bd203eb243141c9fe336c811e83b5a41bf85ca6e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcp.1041060216$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcp.1041060216$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/7217215$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Moser, Gertrude C.</creatorcontrib><creatorcontrib>Fallon, Robert J.</creatorcontrib><creatorcontrib>Meiss, Harriet K.</creatorcontrib><title>Fluorimetric measurements and chromatin condensation patterns of nuclei from 3T3 cells throughout G1</title><title>Journal of cellular physiology</title><addtitle>J. Cell. Physiol</addtitle><description>Using two cytological methods based on nuclear morphology, quinacrine dihydrochloride (QDH) staining and premature chromosome condensation (PCC), it has been possible to identify cell cyle positions within G1 of growing and arrested 3T3 cells. The fluorescent intensity of QDH‐stained interphase cells appears to decrease as the cells pass from mitosis to S phase. Likewise, the length and thickness of prematurely condensed chromatids can be related to the cells' position within the G1 period. Data are presented that deal with three interrelated topics: (1) We determined by fluorometric measurements of nuclei from 3T3 cells that the visual observation of the decrease in QDH fluorescence during G1 reflects an actual decrease in total fluorescence and not a dispersion of the fluorescent chromatin in a larger nuclear area. (2) We correlated the results obtained by QDH staining with those of PCC on the same cell samples blocked in G1 by different conditions. Serum‐starved and contact‐inhibited cell nuclei had the highest intensity, hydroxyurea‐treated ones had the lowest intensity, while that of isoleucine‐deprived cells was in between. The same relative order of G1 positions was obtained based on PCC morphology. Thus, both methods monitor the state of chromatin condensation and can be used to identify cell cycle position within G1.(3) We showed with both methods that the states of chromatin resulting from the various G1 blocking conditions differ from each other.</description><subject>Animals</subject><subject>Cell Fusion</subject><subject>Cells, Cultured</subject><subject>Chromatin - ultrastructure</subject><subject>Contact Inhibition</subject><subject>Culture Media</subject><subject>Hydroxyurea - pharmacology</subject><subject>Interphase</subject><subject>Isoleucine - deficiency</subject><subject>Mice</subject><subject>Microscopy, Fluorescence</subject><subject>Mitosis</subject><subject>Quinacrine</subject><issn>0021-9541</issn><issn>1097-4652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1981</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1P3DAQhi3UCpaPa29IPvUWamdsJznSVVla0cJhUXuzHGdSAom9tR0B_x6jXVH1VMmSR5rnfTV6CPnA2RlnrPx0bzd5EJwpVnK1RxacNVUhlCzfkUUGeNFIwQ_IYYz3jLGmAdgn-1XJ85ML0l2Msw_DhCkMlk5o4hxwQpciNa6j9i74yaTBUetdhy7m2Tu6MSlhcJH6nrrZjjjQPoMU1kAtjmOkKQfn33d-TnTFj8n73owRT3b_Ebm9-LJeXhZX16uvy_OrwkJVq6K3CkoURjIQwKpGGdG2CG1XMsC2FMAFt02PAMrWnGMNrTSCt30trVHI4Yh83PZugv8zY0x6GuLrPcahn6OupGxAsjqDZ1vQBh9jwF5vsgMTnjVn-lWrzlr1X605cLprntsJuzd85zHvm-3-cRjx-T9t-tvy5p_uYpsdYsKnt6wJD1pVUEn988dKf-eff91ItdYKXgAhLJN-</recordid><startdate>198102</startdate><enddate>198102</enddate><creator>Moser, Gertrude C.</creator><creator>Fallon, Robert J.</creator><creator>Meiss, Harriet K.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>198102</creationdate><title>Fluorimetric measurements and chromatin condensation patterns of nuclei from 3T3 cells throughout G1</title><author>Moser, Gertrude C. ; Fallon, Robert J. ; Meiss, Harriet K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3786-fc632e4a503430796a4bbe3bd203eb243141c9fe336c811e83b5a41bf85ca6e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1981</creationdate><topic>Animals</topic><topic>Cell Fusion</topic><topic>Cells, Cultured</topic><topic>Chromatin - ultrastructure</topic><topic>Contact Inhibition</topic><topic>Culture Media</topic><topic>Hydroxyurea - pharmacology</topic><topic>Interphase</topic><topic>Isoleucine - deficiency</topic><topic>Mice</topic><topic>Microscopy, Fluorescence</topic><topic>Mitosis</topic><topic>Quinacrine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moser, Gertrude C.</creatorcontrib><creatorcontrib>Fallon, Robert J.</creatorcontrib><creatorcontrib>Meiss, Harriet K.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of cellular physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moser, Gertrude C.</au><au>Fallon, Robert J.</au><au>Meiss, Harriet K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fluorimetric measurements and chromatin condensation patterns of nuclei from 3T3 cells throughout G1</atitle><jtitle>Journal of cellular physiology</jtitle><addtitle>J. Cell. Physiol</addtitle><date>1981-02</date><risdate>1981</risdate><volume>106</volume><issue>2</issue><spage>293</spage><epage>301</epage><pages>293-301</pages><issn>0021-9541</issn><eissn>1097-4652</eissn><abstract>Using two cytological methods based on nuclear morphology, quinacrine dihydrochloride (QDH) staining and premature chromosome condensation (PCC), it has been possible to identify cell cyle positions within G1 of growing and arrested 3T3 cells. The fluorescent intensity of QDH‐stained interphase cells appears to decrease as the cells pass from mitosis to S phase. Likewise, the length and thickness of prematurely condensed chromatids can be related to the cells' position within the G1 period. Data are presented that deal with three interrelated topics: (1) We determined by fluorometric measurements of nuclei from 3T3 cells that the visual observation of the decrease in QDH fluorescence during G1 reflects an actual decrease in total fluorescence and not a dispersion of the fluorescent chromatin in a larger nuclear area. (2) We correlated the results obtained by QDH staining with those of PCC on the same cell samples blocked in G1 by different conditions. Serum‐starved and contact‐inhibited cell nuclei had the highest intensity, hydroxyurea‐treated ones had the lowest intensity, while that of isoleucine‐deprived cells was in between. The same relative order of G1 positions was obtained based on PCC morphology. Thus, both methods monitor the state of chromatin condensation and can be used to identify cell cycle position within G1.(3) We showed with both methods that the states of chromatin resulting from the various G1 blocking conditions differ from each other.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>7217215</pmid><doi>10.1002/jcp.1041060216</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9541 |
ispartof | Journal of cellular physiology, 1981-02, Vol.106 (2), p.293-301 |
issn | 0021-9541 1097-4652 |
language | eng |
recordid | cdi_proquest_miscellaneous_75593508 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Animals Cell Fusion Cells, Cultured Chromatin - ultrastructure Contact Inhibition Culture Media Hydroxyurea - pharmacology Interphase Isoleucine - deficiency Mice Microscopy, Fluorescence Mitosis Quinacrine |
title | Fluorimetric measurements and chromatin condensation patterns of nuclei from 3T3 cells throughout G1 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T15%3A45%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fluorimetric%20measurements%20and%20chromatin%20condensation%20patterns%20of%20nuclei%20from%203T3%20cells%20throughout%20G1&rft.jtitle=Journal%20of%20cellular%20physiology&rft.au=Moser,%20Gertrude%20C.&rft.date=1981-02&rft.volume=106&rft.issue=2&rft.spage=293&rft.epage=301&rft.pages=293-301&rft.issn=0021-9541&rft.eissn=1097-4652&rft_id=info:doi/10.1002/jcp.1041060216&rft_dat=%3Cproquest_cross%3E75593508%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=75593508&rft_id=info:pmid/7217215&rfr_iscdi=true |