A hybrid bankruptcy prediction model with dynamic loadings on accounting-ratio-based and market-based information: A binary quantile regression approach
While using the binary quantile regression (BQR) model, we establish a hybrid bankruptcy prediction model with dynamic loadings for both the accounting-ratio-based and market-based information. Using the proposed model, we conduct an empirical study on a dataset comprising of default events during t...
Gespeichert in:
Veröffentlicht in: | Journal of empirical finance 2010-09, Vol.17 (4), p.818-833 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | While using the binary quantile regression (BQR) model, we establish a hybrid bankruptcy prediction model with dynamic loadings for both the accounting-ratio-based and market-based information. Using the proposed model, we conduct an empirical study on a dataset comprising of default events during the period from 1996 to 2006. In this study, those firms experienced bankruptcy/liquidation events as defined by the Compustat database are classified as “defaulted” firms, whereas all other firms listed in the Fortune 500 with over a B-rating during the same time period are identified as “survived” firms. The empirical findings of this study are consistent with the following notions. The distance-to-default (DD) variable derived from the market-based model is statistically significant in explaining the observed default events, particularly of those firms with relatively poor credit quality (i.e., high credit risk). Conversely, the
z-score obtained with the accounting-ratio-based approach is statistically significant in predicting bankruptcies of firms of relatively good credit quality (i.e., low credit risk). In-sample and out-of-sample bankruptcy prediction tests demonstrated the superior performance of utilizing dynamic loadings rather than constant loadings derived by the conventional logit model. |
---|---|
ISSN: | 0927-5398 1879-1727 |
DOI: | 10.1016/j.jempfin.2010.04.004 |