Resistance to Tetracycline, a Hydrophilic Antibiotic, Is Mediated by P-Glycoprotein in Human Multidrug-Resistant Cells
Two multidrug-resistant human leukemic CCRF-CEM sublines (CEM/VCR R and CEM/VLB100) were significantly more resistant to tetracycline, a hydrophilic antibiotic, than parental cells (P < 0.001). Verapamil and cyclosporin A completely reversed tetracycline resistance in CEM/VCR R cells, which also...
Gespeichert in:
Veröffentlicht in: | Biochemical and biophysical research communications 1993-01, Vol.190 (1), p.79-85 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Two multidrug-resistant human leukemic CCRF-CEM sublines (CEM/VCR R and CEM/VLB100) were significantly more resistant to tetracycline, a hydrophilic antibiotic, than parental cells (P < 0.001). Verapamil and cyclosporin A completely reversed tetracycline resistance in CEM/VCR R cells, which also accumulated and retained significantly less [3H]tetracycline than CCRF-CEM cells. Like verapamil, addition of tetracycline to CEM/VCR R cells which had achieved steady-state vincristine levels resulted in augmented vincristine accumulation. [3H]Azidopine photoaffinity labelling of CEM/VCR R membrane proteins was inhibited by tetracycline in a dose-dependent manner. Although drugs associated with the multidrug-resistance phenotype are typically hydrophobic compounds, these data suggest that resistance to tetracycline, despite its hydrophilic nature, is mediated by P-glycoprotein in these cell lines. |
---|---|
ISSN: | 0006-291X 1090-2104 |
DOI: | 10.1006/bbrc.1993.1013 |