Stress relaxation in entangled polymer melts

We present an extensive set of simulation results for the stress relaxation in equilibrium and step-strained bead-spring polymer melts. The data allow us to explore the chain dynamics and the shear relaxation modulus, G(t), into the plateau regime for chains with Z=40 entanglements and into the term...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2010-08, Vol.105 (6), p.068301-068301, Article 068301
Hauptverfasser: Hou, Ji-Xuan, Svaneborg, Carsten, Everaers, Ralf, Grest, Gary S
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 068301
container_issue 6
container_start_page 068301
container_title Physical review letters
container_volume 105
creator Hou, Ji-Xuan
Svaneborg, Carsten
Everaers, Ralf
Grest, Gary S
description We present an extensive set of simulation results for the stress relaxation in equilibrium and step-strained bead-spring polymer melts. The data allow us to explore the chain dynamics and the shear relaxation modulus, G(t), into the plateau regime for chains with Z=40 entanglements and into the terminal relaxation regime for Z=10. Using the known (Rouse) mobility of unentangled chains and the melt entanglement length determined via the primitive path analysis of the microscopic topological state of our systems, we have performed parameter-free tests of several different tube models. We find excellent agreement for the Likhtman-McLeish theory using the double reptation approximation for constraint release, if we remove the contribution of high-frequency modes to contour length fluctuations of the primitive chain.
doi_str_mv 10.1103/physrevlett.105.068301
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_755403950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>755403950</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-a5b603758044f776f5db26b4239cb445bc0bea3b395e4485094bf99187d4daf23</originalsourceid><addsrcrecordid>eNo90E1LAzEQBuAgiq3Vv1D25sWtk02ySY5SrAoFxY_zkuzO6kr2wyQt9t-70uppYHjfGXgImVNYUArsevjYBY9bhzEuKIgF5IoBPSJTClKnklJ-TKYAjKYaQE7IWQifAECzXJ2SSQYqV0DVlFy9RI8hJB6d-Tax6buk6RLsouneHVbJ0Ltdiz5p0cVwTk5q4wJeHOaMvK1uX5f36frx7mF5s05LnumYGmFzYFIo4LyWMq9FZbPc8ozp0nIubAkWDbNMC-RcCdDc1lpTJStemTpjM3K5vzv4_muDIRZtE0p0znTYb0IhheAwtmFM5vtk6fswgtTF4JvW-F1BofiFKp5GqGfcrkeocSeKPdRYnB9ebGyL1X_tT4b9AEqgZqw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>755403950</pqid></control><display><type>article</type><title>Stress relaxation in entangled polymer melts</title><source>American Physical Society Journals</source><creator>Hou, Ji-Xuan ; Svaneborg, Carsten ; Everaers, Ralf ; Grest, Gary S</creator><creatorcontrib>Hou, Ji-Xuan ; Svaneborg, Carsten ; Everaers, Ralf ; Grest, Gary S</creatorcontrib><description>We present an extensive set of simulation results for the stress relaxation in equilibrium and step-strained bead-spring polymer melts. The data allow us to explore the chain dynamics and the shear relaxation modulus, G(t), into the plateau regime for chains with Z=40 entanglements and into the terminal relaxation regime for Z=10. Using the known (Rouse) mobility of unentangled chains and the melt entanglement length determined via the primitive path analysis of the microscopic topological state of our systems, we have performed parameter-free tests of several different tube models. We find excellent agreement for the Likhtman-McLeish theory using the double reptation approximation for constraint release, if we remove the contribution of high-frequency modes to contour length fluctuations of the primitive chain.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/physrevlett.105.068301</identifier><identifier>PMID: 20868018</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review letters, 2010-08, Vol.105 (6), p.068301-068301, Article 068301</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-a5b603758044f776f5db26b4239cb445bc0bea3b395e4485094bf99187d4daf23</citedby><cites>FETCH-LOGICAL-c429t-a5b603758044f776f5db26b4239cb445bc0bea3b395e4485094bf99187d4daf23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20868018$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hou, Ji-Xuan</creatorcontrib><creatorcontrib>Svaneborg, Carsten</creatorcontrib><creatorcontrib>Everaers, Ralf</creatorcontrib><creatorcontrib>Grest, Gary S</creatorcontrib><title>Stress relaxation in entangled polymer melts</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We present an extensive set of simulation results for the stress relaxation in equilibrium and step-strained bead-spring polymer melts. The data allow us to explore the chain dynamics and the shear relaxation modulus, G(t), into the plateau regime for chains with Z=40 entanglements and into the terminal relaxation regime for Z=10. Using the known (Rouse) mobility of unentangled chains and the melt entanglement length determined via the primitive path analysis of the microscopic topological state of our systems, we have performed parameter-free tests of several different tube models. We find excellent agreement for the Likhtman-McLeish theory using the double reptation approximation for constraint release, if we remove the contribution of high-frequency modes to contour length fluctuations of the primitive chain.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNo90E1LAzEQBuAgiq3Vv1D25sWtk02ySY5SrAoFxY_zkuzO6kr2wyQt9t-70uppYHjfGXgImVNYUArsevjYBY9bhzEuKIgF5IoBPSJTClKnklJ-TKYAjKYaQE7IWQifAECzXJ2SSQYqV0DVlFy9RI8hJB6d-Tax6buk6RLsouneHVbJ0Ltdiz5p0cVwTk5q4wJeHOaMvK1uX5f36frx7mF5s05LnumYGmFzYFIo4LyWMq9FZbPc8ozp0nIubAkWDbNMC-RcCdDc1lpTJStemTpjM3K5vzv4_muDIRZtE0p0znTYb0IhheAwtmFM5vtk6fswgtTF4JvW-F1BofiFKp5GqGfcrkeocSeKPdRYnB9ebGyL1X_tT4b9AEqgZqw</recordid><startdate>20100805</startdate><enddate>20100805</enddate><creator>Hou, Ji-Xuan</creator><creator>Svaneborg, Carsten</creator><creator>Everaers, Ralf</creator><creator>Grest, Gary S</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20100805</creationdate><title>Stress relaxation in entangled polymer melts</title><author>Hou, Ji-Xuan ; Svaneborg, Carsten ; Everaers, Ralf ; Grest, Gary S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-a5b603758044f776f5db26b4239cb445bc0bea3b395e4485094bf99187d4daf23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hou, Ji-Xuan</creatorcontrib><creatorcontrib>Svaneborg, Carsten</creatorcontrib><creatorcontrib>Everaers, Ralf</creatorcontrib><creatorcontrib>Grest, Gary S</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hou, Ji-Xuan</au><au>Svaneborg, Carsten</au><au>Everaers, Ralf</au><au>Grest, Gary S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stress relaxation in entangled polymer melts</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2010-08-05</date><risdate>2010</risdate><volume>105</volume><issue>6</issue><spage>068301</spage><epage>068301</epage><pages>068301-068301</pages><artnum>068301</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We present an extensive set of simulation results for the stress relaxation in equilibrium and step-strained bead-spring polymer melts. The data allow us to explore the chain dynamics and the shear relaxation modulus, G(t), into the plateau regime for chains with Z=40 entanglements and into the terminal relaxation regime for Z=10. Using the known (Rouse) mobility of unentangled chains and the melt entanglement length determined via the primitive path analysis of the microscopic topological state of our systems, we have performed parameter-free tests of several different tube models. We find excellent agreement for the Likhtman-McLeish theory using the double reptation approximation for constraint release, if we remove the contribution of high-frequency modes to contour length fluctuations of the primitive chain.</abstract><cop>United States</cop><pmid>20868018</pmid><doi>10.1103/physrevlett.105.068301</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2010-08, Vol.105 (6), p.068301-068301, Article 068301
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_755403950
source American Physical Society Journals
title Stress relaxation in entangled polymer melts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T16%3A27%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stress%20relaxation%20in%20entangled%20polymer%20melts&rft.jtitle=Physical%20review%20letters&rft.au=Hou,%20Ji-Xuan&rft.date=2010-08-05&rft.volume=105&rft.issue=6&rft.spage=068301&rft.epage=068301&rft.pages=068301-068301&rft.artnum=068301&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/physrevlett.105.068301&rft_dat=%3Cproquest_cross%3E755403950%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=755403950&rft_id=info:pmid/20868018&rfr_iscdi=true