Stress relaxation in entangled polymer melts
We present an extensive set of simulation results for the stress relaxation in equilibrium and step-strained bead-spring polymer melts. The data allow us to explore the chain dynamics and the shear relaxation modulus, G(t), into the plateau regime for chains with Z=40 entanglements and into the term...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2010-08, Vol.105 (6), p.068301-068301, Article 068301 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 068301 |
---|---|
container_issue | 6 |
container_start_page | 068301 |
container_title | Physical review letters |
container_volume | 105 |
creator | Hou, Ji-Xuan Svaneborg, Carsten Everaers, Ralf Grest, Gary S |
description | We present an extensive set of simulation results for the stress relaxation in equilibrium and step-strained bead-spring polymer melts. The data allow us to explore the chain dynamics and the shear relaxation modulus, G(t), into the plateau regime for chains with Z=40 entanglements and into the terminal relaxation regime for Z=10. Using the known (Rouse) mobility of unentangled chains and the melt entanglement length determined via the primitive path analysis of the microscopic topological state of our systems, we have performed parameter-free tests of several different tube models. We find excellent agreement for the Likhtman-McLeish theory using the double reptation approximation for constraint release, if we remove the contribution of high-frequency modes to contour length fluctuations of the primitive chain. |
doi_str_mv | 10.1103/physrevlett.105.068301 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_755403950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>755403950</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-a5b603758044f776f5db26b4239cb445bc0bea3b395e4485094bf99187d4daf23</originalsourceid><addsrcrecordid>eNo90E1LAzEQBuAgiq3Vv1D25sWtk02ySY5SrAoFxY_zkuzO6kr2wyQt9t-70uppYHjfGXgImVNYUArsevjYBY9bhzEuKIgF5IoBPSJTClKnklJ-TKYAjKYaQE7IWQifAECzXJ2SSQYqV0DVlFy9RI8hJB6d-Tax6buk6RLsouneHVbJ0Ltdiz5p0cVwTk5q4wJeHOaMvK1uX5f36frx7mF5s05LnumYGmFzYFIo4LyWMq9FZbPc8ozp0nIubAkWDbNMC-RcCdDc1lpTJStemTpjM3K5vzv4_muDIRZtE0p0znTYb0IhheAwtmFM5vtk6fswgtTF4JvW-F1BofiFKp5GqGfcrkeocSeKPdRYnB9ebGyL1X_tT4b9AEqgZqw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>755403950</pqid></control><display><type>article</type><title>Stress relaxation in entangled polymer melts</title><source>American Physical Society Journals</source><creator>Hou, Ji-Xuan ; Svaneborg, Carsten ; Everaers, Ralf ; Grest, Gary S</creator><creatorcontrib>Hou, Ji-Xuan ; Svaneborg, Carsten ; Everaers, Ralf ; Grest, Gary S</creatorcontrib><description>We present an extensive set of simulation results for the stress relaxation in equilibrium and step-strained bead-spring polymer melts. The data allow us to explore the chain dynamics and the shear relaxation modulus, G(t), into the plateau regime for chains with Z=40 entanglements and into the terminal relaxation regime for Z=10. Using the known (Rouse) mobility of unentangled chains and the melt entanglement length determined via the primitive path analysis of the microscopic topological state of our systems, we have performed parameter-free tests of several different tube models. We find excellent agreement for the Likhtman-McLeish theory using the double reptation approximation for constraint release, if we remove the contribution of high-frequency modes to contour length fluctuations of the primitive chain.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/physrevlett.105.068301</identifier><identifier>PMID: 20868018</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review letters, 2010-08, Vol.105 (6), p.068301-068301, Article 068301</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-a5b603758044f776f5db26b4239cb445bc0bea3b395e4485094bf99187d4daf23</citedby><cites>FETCH-LOGICAL-c429t-a5b603758044f776f5db26b4239cb445bc0bea3b395e4485094bf99187d4daf23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20868018$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hou, Ji-Xuan</creatorcontrib><creatorcontrib>Svaneborg, Carsten</creatorcontrib><creatorcontrib>Everaers, Ralf</creatorcontrib><creatorcontrib>Grest, Gary S</creatorcontrib><title>Stress relaxation in entangled polymer melts</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We present an extensive set of simulation results for the stress relaxation in equilibrium and step-strained bead-spring polymer melts. The data allow us to explore the chain dynamics and the shear relaxation modulus, G(t), into the plateau regime for chains with Z=40 entanglements and into the terminal relaxation regime for Z=10. Using the known (Rouse) mobility of unentangled chains and the melt entanglement length determined via the primitive path analysis of the microscopic topological state of our systems, we have performed parameter-free tests of several different tube models. We find excellent agreement for the Likhtman-McLeish theory using the double reptation approximation for constraint release, if we remove the contribution of high-frequency modes to contour length fluctuations of the primitive chain.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNo90E1LAzEQBuAgiq3Vv1D25sWtk02ySY5SrAoFxY_zkuzO6kr2wyQt9t-70uppYHjfGXgImVNYUArsevjYBY9bhzEuKIgF5IoBPSJTClKnklJ-TKYAjKYaQE7IWQifAECzXJ2SSQYqV0DVlFy9RI8hJB6d-Tax6buk6RLsouneHVbJ0Ltdiz5p0cVwTk5q4wJeHOaMvK1uX5f36frx7mF5s05LnumYGmFzYFIo4LyWMq9FZbPc8ozp0nIubAkWDbNMC-RcCdDc1lpTJStemTpjM3K5vzv4_muDIRZtE0p0znTYb0IhheAwtmFM5vtk6fswgtTF4JvW-F1BofiFKp5GqGfcrkeocSeKPdRYnB9ebGyL1X_tT4b9AEqgZqw</recordid><startdate>20100805</startdate><enddate>20100805</enddate><creator>Hou, Ji-Xuan</creator><creator>Svaneborg, Carsten</creator><creator>Everaers, Ralf</creator><creator>Grest, Gary S</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20100805</creationdate><title>Stress relaxation in entangled polymer melts</title><author>Hou, Ji-Xuan ; Svaneborg, Carsten ; Everaers, Ralf ; Grest, Gary S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-a5b603758044f776f5db26b4239cb445bc0bea3b395e4485094bf99187d4daf23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hou, Ji-Xuan</creatorcontrib><creatorcontrib>Svaneborg, Carsten</creatorcontrib><creatorcontrib>Everaers, Ralf</creatorcontrib><creatorcontrib>Grest, Gary S</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hou, Ji-Xuan</au><au>Svaneborg, Carsten</au><au>Everaers, Ralf</au><au>Grest, Gary S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stress relaxation in entangled polymer melts</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2010-08-05</date><risdate>2010</risdate><volume>105</volume><issue>6</issue><spage>068301</spage><epage>068301</epage><pages>068301-068301</pages><artnum>068301</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We present an extensive set of simulation results for the stress relaxation in equilibrium and step-strained bead-spring polymer melts. The data allow us to explore the chain dynamics and the shear relaxation modulus, G(t), into the plateau regime for chains with Z=40 entanglements and into the terminal relaxation regime for Z=10. Using the known (Rouse) mobility of unentangled chains and the melt entanglement length determined via the primitive path analysis of the microscopic topological state of our systems, we have performed parameter-free tests of several different tube models. We find excellent agreement for the Likhtman-McLeish theory using the double reptation approximation for constraint release, if we remove the contribution of high-frequency modes to contour length fluctuations of the primitive chain.</abstract><cop>United States</cop><pmid>20868018</pmid><doi>10.1103/physrevlett.105.068301</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2010-08, Vol.105 (6), p.068301-068301, Article 068301 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_755403950 |
source | American Physical Society Journals |
title | Stress relaxation in entangled polymer melts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T16%3A27%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stress%20relaxation%20in%20entangled%20polymer%20melts&rft.jtitle=Physical%20review%20letters&rft.au=Hou,%20Ji-Xuan&rft.date=2010-08-05&rft.volume=105&rft.issue=6&rft.spage=068301&rft.epage=068301&rft.pages=068301-068301&rft.artnum=068301&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/physrevlett.105.068301&rft_dat=%3Cproquest_cross%3E755403950%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=755403950&rft_id=info:pmid/20868018&rfr_iscdi=true |