Mechanism for current saturation and energy dissipation in graphene transistors

From a combination of careful and detailed theoretical and experimental studies, we demonstrate that the Boltzmann theory including all scattering mechanisms gives an excellent account, with no adjustable parameters, of high electric field transport in single as well as double-oxide graphene transis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2010-06, Vol.104 (23), p.236601-236601, Article 236601
Hauptverfasser: DaSilva, Ashley M, Zou, Ke, Jain, J K, Zhu, J
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 236601
container_issue 23
container_start_page 236601
container_title Physical review letters
container_volume 104
creator DaSilva, Ashley M
Zou, Ke
Jain, J K
Zhu, J
description From a combination of careful and detailed theoretical and experimental studies, we demonstrate that the Boltzmann theory including all scattering mechanisms gives an excellent account, with no adjustable parameters, of high electric field transport in single as well as double-oxide graphene transistors. We further show unambiguously that scattering from the substrate and superstrate surface optical phonons governs the high-field transport and heat dissipation over a wide range of experimentally relevant parameters. Models that neglect surface optical phonons altogether or treat them in a simple phenomenological manner are inadequate. We outline possible strategies for achieving higher current and complete saturation in graphene devices.
doi_str_mv 10.1103/physrevlett.104.236601
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_755403461</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>755403461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-57cfcf6a03c24745f19aedb8f299caaac0b82a8003d3b74ac30fdc4d163c83ae3</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EoqXwCpVvnFLWsWMnR1TxJxUVIThHG8dpgxIn2E6lvj1BKZxWmp3Z1XyELBmsGAN-1--P3plDY0JYMRCrmEsJ7IzMGagsUoyJczIH4CzKANSMXHn_BQAsluklmcWQShUn6ZxsX43eo619S6vOUT04Z2ygHsPgMNSdpWhLaqxxuyMta-_rfpJrS3cO-_24osGh9bUPnfPX5KLCxpub01yQz8eHj_VztNk-vazvN5HmSoYoUbrSlUTgOhZKJBXL0JRFWsVZphFRQ5HGmI4FSl4ogZpDVWpRMsl1ytHwBbmd7vau-x6MD3lbe22aBq3pBp-rJBHAhWSjU05O7To_Mqvy3tUtumPOIP9lmb-NLN_NYTOyHDWRTyzH4PL0YihaU_7H_uDxH2twdb0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>755403461</pqid></control><display><type>article</type><title>Mechanism for current saturation and energy dissipation in graphene transistors</title><source>American Physical Society Journals</source><creator>DaSilva, Ashley M ; Zou, Ke ; Jain, J K ; Zhu, J</creator><creatorcontrib>DaSilva, Ashley M ; Zou, Ke ; Jain, J K ; Zhu, J</creatorcontrib><description>From a combination of careful and detailed theoretical and experimental studies, we demonstrate that the Boltzmann theory including all scattering mechanisms gives an excellent account, with no adjustable parameters, of high electric field transport in single as well as double-oxide graphene transistors. We further show unambiguously that scattering from the substrate and superstrate surface optical phonons governs the high-field transport and heat dissipation over a wide range of experimentally relevant parameters. Models that neglect surface optical phonons altogether or treat them in a simple phenomenological manner are inadequate. We outline possible strategies for achieving higher current and complete saturation in graphene devices.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/physrevlett.104.236601</identifier><identifier>PMID: 20867258</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review letters, 2010-06, Vol.104 (23), p.236601-236601, Article 236601</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-57cfcf6a03c24745f19aedb8f299caaac0b82a8003d3b74ac30fdc4d163c83ae3</citedby><cites>FETCH-LOGICAL-c376t-57cfcf6a03c24745f19aedb8f299caaac0b82a8003d3b74ac30fdc4d163c83ae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20867258$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>DaSilva, Ashley M</creatorcontrib><creatorcontrib>Zou, Ke</creatorcontrib><creatorcontrib>Jain, J K</creatorcontrib><creatorcontrib>Zhu, J</creatorcontrib><title>Mechanism for current saturation and energy dissipation in graphene transistors</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>From a combination of careful and detailed theoretical and experimental studies, we demonstrate that the Boltzmann theory including all scattering mechanisms gives an excellent account, with no adjustable parameters, of high electric field transport in single as well as double-oxide graphene transistors. We further show unambiguously that scattering from the substrate and superstrate surface optical phonons governs the high-field transport and heat dissipation over a wide range of experimentally relevant parameters. Models that neglect surface optical phonons altogether or treat them in a simple phenomenological manner are inadequate. We outline possible strategies for achieving higher current and complete saturation in graphene devices.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OwzAQhC0EoqXwCpVvnFLWsWMnR1TxJxUVIThHG8dpgxIn2E6lvj1BKZxWmp3Z1XyELBmsGAN-1--P3plDY0JYMRCrmEsJ7IzMGagsUoyJczIH4CzKANSMXHn_BQAsluklmcWQShUn6ZxsX43eo619S6vOUT04Z2ygHsPgMNSdpWhLaqxxuyMta-_rfpJrS3cO-_24osGh9bUPnfPX5KLCxpub01yQz8eHj_VztNk-vazvN5HmSoYoUbrSlUTgOhZKJBXL0JRFWsVZphFRQ5HGmI4FSl4ogZpDVWpRMsl1ytHwBbmd7vau-x6MD3lbe22aBq3pBp-rJBHAhWSjU05O7To_Mqvy3tUtumPOIP9lmb-NLN_NYTOyHDWRTyzH4PL0YihaU_7H_uDxH2twdb0</recordid><startdate>20100608</startdate><enddate>20100608</enddate><creator>DaSilva, Ashley M</creator><creator>Zou, Ke</creator><creator>Jain, J K</creator><creator>Zhu, J</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20100608</creationdate><title>Mechanism for current saturation and energy dissipation in graphene transistors</title><author>DaSilva, Ashley M ; Zou, Ke ; Jain, J K ; Zhu, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-57cfcf6a03c24745f19aedb8f299caaac0b82a8003d3b74ac30fdc4d163c83ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DaSilva, Ashley M</creatorcontrib><creatorcontrib>Zou, Ke</creatorcontrib><creatorcontrib>Jain, J K</creatorcontrib><creatorcontrib>Zhu, J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DaSilva, Ashley M</au><au>Zou, Ke</au><au>Jain, J K</au><au>Zhu, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism for current saturation and energy dissipation in graphene transistors</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2010-06-08</date><risdate>2010</risdate><volume>104</volume><issue>23</issue><spage>236601</spage><epage>236601</epage><pages>236601-236601</pages><artnum>236601</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>From a combination of careful and detailed theoretical and experimental studies, we demonstrate that the Boltzmann theory including all scattering mechanisms gives an excellent account, with no adjustable parameters, of high electric field transport in single as well as double-oxide graphene transistors. We further show unambiguously that scattering from the substrate and superstrate surface optical phonons governs the high-field transport and heat dissipation over a wide range of experimentally relevant parameters. Models that neglect surface optical phonons altogether or treat them in a simple phenomenological manner are inadequate. We outline possible strategies for achieving higher current and complete saturation in graphene devices.</abstract><cop>United States</cop><pmid>20867258</pmid><doi>10.1103/physrevlett.104.236601</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2010-06, Vol.104 (23), p.236601-236601, Article 236601
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_755403461
source American Physical Society Journals
title Mechanism for current saturation and energy dissipation in graphene transistors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T05%3A37%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20for%20current%20saturation%20and%20energy%20dissipation%20in%20graphene%20transistors&rft.jtitle=Physical%20review%20letters&rft.au=DaSilva,%20Ashley%20M&rft.date=2010-06-08&rft.volume=104&rft.issue=23&rft.spage=236601&rft.epage=236601&rft.pages=236601-236601&rft.artnum=236601&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/physrevlett.104.236601&rft_dat=%3Cproquest_cross%3E755403461%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=755403461&rft_id=info:pmid/20867258&rfr_iscdi=true