Convergence characteristics of the cumulant expansion for Fourier path integrals

The cumulant representation of the Fourier path integral method is examined to determine the asymptotic convergence characteristics of the imaginary-time density matrix with respect to the number of path variables N included. It is proved that when the cumulant expansion is truncated at order p, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2010-06, Vol.81 (6 Pt 2), p.066707-066707, Article 066707
Hauptverfasser: Kunikeev, Sharif D, Freeman, David L, Doll, J D
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 066707
container_issue 6 Pt 2
container_start_page 066707
container_title Physical review. E, Statistical, nonlinear, and soft matter physics
container_volume 81
creator Kunikeev, Sharif D
Freeman, David L
Doll, J D
description The cumulant representation of the Fourier path integral method is examined to determine the asymptotic convergence characteristics of the imaginary-time density matrix with respect to the number of path variables N included. It is proved that when the cumulant expansion is truncated at order p, the asymptotic convergence rate of the density matrix behaves like N(-(2p+1)). The complex algebra associated with the proof is simplified by introducing a diagrammatic representation of the contributing terms along with an associated linked-cluster theorem. The cumulant terms at each order are expanded in a series such that the asymptotic convergence rate is maintained without the need to calculate the full cumulant at order p. Using this truncated expansion of each cumulant at order p, the numerical cost in developing Fourier path integral expressions having convergence order N(-(2p+1)) is shown to be approximately linear in the number of required potential energy evaluations making the method promising for actual numerical implementation.
doi_str_mv 10.1103/PhysRevE.81.066707
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_755403428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>755403428</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-bc6a664208df9e295612a3b36233eaf81cb4eb11af57c84165bbbffe8327f8743</originalsourceid><addsrcrecordid>eNo9kE9PAjEQxRujEUS_gAfTm6fF_ttuORoCakIiMXpu2jJl17C72HaJfHuXAJ5mMnnv5c0PoXtKxpQS_rQs9_EDdrOxomMiZUGKCzSkeU4yxgt5edj5JONFng_QTYzfhHDGlbhGA0aUlLkQQ7Scts0OwhoaB9iVJhiXIFQxVS7i1uNU9ueu7jamSRh-t6aJVdtg3wY8b7tQQcBbk0pcNQnWwWziLbry_YC70xyhr_nsc_qaLd5f3qbPi8xxIVNmnTRSir7Iyk-ATXJJmeGWS8Y5GK-oswIspcbnhVOCytxa6z0ozgqvCsFH6PGYuw3tTwcx6bqKDjZ9UWi7qPuvBeGCqV7JjkoX2hgDeL0NVW3CXlOiDyD1GaRWVB9B9qaHU3xna1j9W87k-B-PknG7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>755403428</pqid></control><display><type>article</type><title>Convergence characteristics of the cumulant expansion for Fourier path integrals</title><source>American Physical Society Journals</source><creator>Kunikeev, Sharif D ; Freeman, David L ; Doll, J D</creator><creatorcontrib>Kunikeev, Sharif D ; Freeman, David L ; Doll, J D</creatorcontrib><description>The cumulant representation of the Fourier path integral method is examined to determine the asymptotic convergence characteristics of the imaginary-time density matrix with respect to the number of path variables N included. It is proved that when the cumulant expansion is truncated at order p, the asymptotic convergence rate of the density matrix behaves like N(-(2p+1)). The complex algebra associated with the proof is simplified by introducing a diagrammatic representation of the contributing terms along with an associated linked-cluster theorem. The cumulant terms at each order are expanded in a series such that the asymptotic convergence rate is maintained without the need to calculate the full cumulant at order p. Using this truncated expansion of each cumulant at order p, the numerical cost in developing Fourier path integral expressions having convergence order N(-(2p+1)) is shown to be approximately linear in the number of required potential energy evaluations making the method promising for actual numerical implementation.</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/PhysRevE.81.066707</identifier><identifier>PMID: 20866544</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2010-06, Vol.81 (6 Pt 2), p.066707-066707, Article 066707</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-bc6a664208df9e295612a3b36233eaf81cb4eb11af57c84165bbbffe8327f8743</citedby><cites>FETCH-LOGICAL-c346t-bc6a664208df9e295612a3b36233eaf81cb4eb11af57c84165bbbffe8327f8743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2862,2863,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20866544$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kunikeev, Sharif D</creatorcontrib><creatorcontrib>Freeman, David L</creatorcontrib><creatorcontrib>Doll, J D</creatorcontrib><title>Convergence characteristics of the cumulant expansion for Fourier path integrals</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>The cumulant representation of the Fourier path integral method is examined to determine the asymptotic convergence characteristics of the imaginary-time density matrix with respect to the number of path variables N included. It is proved that when the cumulant expansion is truncated at order p, the asymptotic convergence rate of the density matrix behaves like N(-(2p+1)). The complex algebra associated with the proof is simplified by introducing a diagrammatic representation of the contributing terms along with an associated linked-cluster theorem. The cumulant terms at each order are expanded in a series such that the asymptotic convergence rate is maintained without the need to calculate the full cumulant at order p. Using this truncated expansion of each cumulant at order p, the numerical cost in developing Fourier path integral expressions having convergence order N(-(2p+1)) is shown to be approximately linear in the number of required potential energy evaluations making the method promising for actual numerical implementation.</description><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNo9kE9PAjEQxRujEUS_gAfTm6fF_ttuORoCakIiMXpu2jJl17C72HaJfHuXAJ5mMnnv5c0PoXtKxpQS_rQs9_EDdrOxomMiZUGKCzSkeU4yxgt5edj5JONFng_QTYzfhHDGlbhGA0aUlLkQQ7Scts0OwhoaB9iVJhiXIFQxVS7i1uNU9ueu7jamSRh-t6aJVdtg3wY8b7tQQcBbk0pcNQnWwWziLbry_YC70xyhr_nsc_qaLd5f3qbPi8xxIVNmnTRSir7Iyk-ATXJJmeGWS8Y5GK-oswIspcbnhVOCytxa6z0ozgqvCsFH6PGYuw3tTwcx6bqKDjZ9UWi7qPuvBeGCqV7JjkoX2hgDeL0NVW3CXlOiDyD1GaRWVB9B9qaHU3xna1j9W87k-B-PknG7</recordid><startdate>201006</startdate><enddate>201006</enddate><creator>Kunikeev, Sharif D</creator><creator>Freeman, David L</creator><creator>Doll, J D</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201006</creationdate><title>Convergence characteristics of the cumulant expansion for Fourier path integrals</title><author>Kunikeev, Sharif D ; Freeman, David L ; Doll, J D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-bc6a664208df9e295612a3b36233eaf81cb4eb11af57c84165bbbffe8327f8743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Kunikeev, Sharif D</creatorcontrib><creatorcontrib>Freeman, David L</creatorcontrib><creatorcontrib>Doll, J D</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kunikeev, Sharif D</au><au>Freeman, David L</au><au>Doll, J D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergence characteristics of the cumulant expansion for Fourier path integrals</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2010-06</date><risdate>2010</risdate><volume>81</volume><issue>6 Pt 2</issue><spage>066707</spage><epage>066707</epage><pages>066707-066707</pages><artnum>066707</artnum><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>The cumulant representation of the Fourier path integral method is examined to determine the asymptotic convergence characteristics of the imaginary-time density matrix with respect to the number of path variables N included. It is proved that when the cumulant expansion is truncated at order p, the asymptotic convergence rate of the density matrix behaves like N(-(2p+1)). The complex algebra associated with the proof is simplified by introducing a diagrammatic representation of the contributing terms along with an associated linked-cluster theorem. The cumulant terms at each order are expanded in a series such that the asymptotic convergence rate is maintained without the need to calculate the full cumulant at order p. Using this truncated expansion of each cumulant at order p, the numerical cost in developing Fourier path integral expressions having convergence order N(-(2p+1)) is shown to be approximately linear in the number of required potential energy evaluations making the method promising for actual numerical implementation.</abstract><cop>United States</cop><pmid>20866544</pmid><doi>10.1103/PhysRevE.81.066707</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1539-3755
ispartof Physical review. E, Statistical, nonlinear, and soft matter physics, 2010-06, Vol.81 (6 Pt 2), p.066707-066707, Article 066707
issn 1539-3755
1550-2376
language eng
recordid cdi_proquest_miscellaneous_755403428
source American Physical Society Journals
title Convergence characteristics of the cumulant expansion for Fourier path integrals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T18%3A41%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergence%20characteristics%20of%20the%20cumulant%20expansion%20for%20Fourier%20path%20integrals&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=Kunikeev,%20Sharif%20D&rft.date=2010-06&rft.volume=81&rft.issue=6%20Pt%202&rft.spage=066707&rft.epage=066707&rft.pages=066707-066707&rft.artnum=066707&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/PhysRevE.81.066707&rft_dat=%3Cproquest_cross%3E755403428%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=755403428&rft_id=info:pmid/20866544&rfr_iscdi=true