Fourier series expansion for nonlinear Hamiltonian oscillators

The problem of nonlinear Hamiltonian oscillators is one of the classical questions in physics. When an analytic solution is not possible, one can resort to obtaining a numerical solution or using perturbation theory around the linear problem. We apply the Fourier series expansion to find approximate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2010-06, Vol.81 (6 Pt 2), p.066201-066201, Article 066201
Hauptverfasser: Méndez, Vicenç, Sans, Cristina, Campos, Daniel, Llopis, Isaac
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 066201
container_issue 6 Pt 2
container_start_page 066201
container_title Physical review. E, Statistical, nonlinear, and soft matter physics
container_volume 81
creator Méndez, Vicenç
Sans, Cristina
Campos, Daniel
Llopis, Isaac
description The problem of nonlinear Hamiltonian oscillators is one of the classical questions in physics. When an analytic solution is not possible, one can resort to obtaining a numerical solution or using perturbation theory around the linear problem. We apply the Fourier series expansion to find approximate solutions to the oscillator position as a function of time as well as the period-amplitude relationship. We compare our results with other recent approaches such as variational methods or heuristic approximations, in particular the Ren-He's method. Based on its application to the Duffing oscillator, the nonlinear pendulum and the eardrum equation, it is shown that the Fourier series expansion method is the most accurate.
doi_str_mv 10.1103/PhysRevE.81.066201
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_755403381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>755403381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-52c2350034f5cde61f335cec92ced3595ab91f68389acb7fb6fe85d699aada683</originalsourceid><addsrcrecordid>eNo9kE9LAzEQxYMotla_gAfZm6et-bNJk4sgpbVCQRE9h2x2gpHdpCZdsd_eLbWeZhjeezPzQ-ia4CkhmN29fOzyK3wvppJMsRAUkxM0JpzjkrKZON33TJVsxvkIXeT8iTGjTFbnaESxFKJSfIzul7FPHlKRYSi5gJ-NCdnHULiYihBD6wOYVKxM59ttDN6EImbr29ZsY8qX6MyZNsPVX52g9-Xibb4q18-PT_OHdWlZJbYlp5YyPuyvHLcNCOIY4xasohYaxhU3tSJOSCaVsfXM1cKB5I1QypjGDPMJuj3kblL86iFvdeezheGKALHPevixwoxJMijpQWlTzDmB05vkO5N2mmC9x6aP2LQk-oBtMN38xfd1B82_5ciJ_QK8JGuD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>755403381</pqid></control><display><type>article</type><title>Fourier series expansion for nonlinear Hamiltonian oscillators</title><source>American Physical Society Journals</source><creator>Méndez, Vicenç ; Sans, Cristina ; Campos, Daniel ; Llopis, Isaac</creator><creatorcontrib>Méndez, Vicenç ; Sans, Cristina ; Campos, Daniel ; Llopis, Isaac</creatorcontrib><description>The problem of nonlinear Hamiltonian oscillators is one of the classical questions in physics. When an analytic solution is not possible, one can resort to obtaining a numerical solution or using perturbation theory around the linear problem. We apply the Fourier series expansion to find approximate solutions to the oscillator position as a function of time as well as the period-amplitude relationship. We compare our results with other recent approaches such as variational methods or heuristic approximations, in particular the Ren-He's method. Based on its application to the Duffing oscillator, the nonlinear pendulum and the eardrum equation, it is shown that the Fourier series expansion method is the most accurate.</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/PhysRevE.81.066201</identifier><identifier>PMID: 20866495</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2010-06, Vol.81 (6 Pt 2), p.066201-066201, Article 066201</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-52c2350034f5cde61f335cec92ced3595ab91f68389acb7fb6fe85d699aada683</citedby><cites>FETCH-LOGICAL-c346t-52c2350034f5cde61f335cec92ced3595ab91f68389acb7fb6fe85d699aada683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20866495$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Méndez, Vicenç</creatorcontrib><creatorcontrib>Sans, Cristina</creatorcontrib><creatorcontrib>Campos, Daniel</creatorcontrib><creatorcontrib>Llopis, Isaac</creatorcontrib><title>Fourier series expansion for nonlinear Hamiltonian oscillators</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>The problem of nonlinear Hamiltonian oscillators is one of the classical questions in physics. When an analytic solution is not possible, one can resort to obtaining a numerical solution or using perturbation theory around the linear problem. We apply the Fourier series expansion to find approximate solutions to the oscillator position as a function of time as well as the period-amplitude relationship. We compare our results with other recent approaches such as variational methods or heuristic approximations, in particular the Ren-He's method. Based on its application to the Duffing oscillator, the nonlinear pendulum and the eardrum equation, it is shown that the Fourier series expansion method is the most accurate.</description><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNo9kE9LAzEQxYMotla_gAfZm6et-bNJk4sgpbVCQRE9h2x2gpHdpCZdsd_eLbWeZhjeezPzQ-ia4CkhmN29fOzyK3wvppJMsRAUkxM0JpzjkrKZON33TJVsxvkIXeT8iTGjTFbnaESxFKJSfIzul7FPHlKRYSi5gJ-NCdnHULiYihBD6wOYVKxM59ttDN6EImbr29ZsY8qX6MyZNsPVX52g9-Xibb4q18-PT_OHdWlZJbYlp5YyPuyvHLcNCOIY4xasohYaxhU3tSJOSCaVsfXM1cKB5I1QypjGDPMJuj3kblL86iFvdeezheGKALHPevixwoxJMijpQWlTzDmB05vkO5N2mmC9x6aP2LQk-oBtMN38xfd1B82_5ciJ_QK8JGuD</recordid><startdate>201006</startdate><enddate>201006</enddate><creator>Méndez, Vicenç</creator><creator>Sans, Cristina</creator><creator>Campos, Daniel</creator><creator>Llopis, Isaac</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201006</creationdate><title>Fourier series expansion for nonlinear Hamiltonian oscillators</title><author>Méndez, Vicenç ; Sans, Cristina ; Campos, Daniel ; Llopis, Isaac</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-52c2350034f5cde61f335cec92ced3595ab91f68389acb7fb6fe85d699aada683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Méndez, Vicenç</creatorcontrib><creatorcontrib>Sans, Cristina</creatorcontrib><creatorcontrib>Campos, Daniel</creatorcontrib><creatorcontrib>Llopis, Isaac</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Méndez, Vicenç</au><au>Sans, Cristina</au><au>Campos, Daniel</au><au>Llopis, Isaac</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fourier series expansion for nonlinear Hamiltonian oscillators</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2010-06</date><risdate>2010</risdate><volume>81</volume><issue>6 Pt 2</issue><spage>066201</spage><epage>066201</epage><pages>066201-066201</pages><artnum>066201</artnum><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>The problem of nonlinear Hamiltonian oscillators is one of the classical questions in physics. When an analytic solution is not possible, one can resort to obtaining a numerical solution or using perturbation theory around the linear problem. We apply the Fourier series expansion to find approximate solutions to the oscillator position as a function of time as well as the period-amplitude relationship. We compare our results with other recent approaches such as variational methods or heuristic approximations, in particular the Ren-He's method. Based on its application to the Duffing oscillator, the nonlinear pendulum and the eardrum equation, it is shown that the Fourier series expansion method is the most accurate.</abstract><cop>United States</cop><pmid>20866495</pmid><doi>10.1103/PhysRevE.81.066201</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1539-3755
ispartof Physical review. E, Statistical, nonlinear, and soft matter physics, 2010-06, Vol.81 (6 Pt 2), p.066201-066201, Article 066201
issn 1539-3755
1550-2376
language eng
recordid cdi_proquest_miscellaneous_755403381
source American Physical Society Journals
title Fourier series expansion for nonlinear Hamiltonian oscillators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A13%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fourier%20series%20expansion%20for%20nonlinear%20Hamiltonian%20oscillators&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=M%C3%A9ndez,%20Vicen%C3%A7&rft.date=2010-06&rft.volume=81&rft.issue=6%20Pt%202&rft.spage=066201&rft.epage=066201&rft.pages=066201-066201&rft.artnum=066201&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/PhysRevE.81.066201&rft_dat=%3Cproquest_cross%3E755403381%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=755403381&rft_id=info:pmid/20866495&rfr_iscdi=true