Bayesian inference for Brownian dynamics

We present a Bayesian method for inferring the potential energy experienced by a particle subject to Brownian dynamics. Assuming polynomial potentials, the best polynomial order can be determined by analytical computation of a series of Bayes factors. The coefficients can be estimated from marginal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2010-07, Vol.82 (1 Pt 2), p.016705-016705, Article 016705
Hauptverfasser: Ensign, Daniel L, Pande, Vijay S
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a Bayesian method for inferring the potential energy experienced by a particle subject to Brownian dynamics. Assuming polynomial potentials, the best polynomial order can be determined by analytical computation of a series of Bayes factors. The coefficients can be estimated from marginal posterior distributions. The method is applicable not only for the motion of an actual Brownian particle but to many kinds of single degree-of-freedom trajectories with Gaussian noise and short, nonzero correlation times.
ISSN:1539-3755
1550-2376
DOI:10.1103/PhysRevE.82.016705