Dipolar 31P NMR spectroscopy of crystalline inorganic phosphorus compounds
The ability of the 90°− t 1−180° pulse sequence to produce accurate dipole-dipole coupling information in solids is investigated. To this end, the experimental 31P spin echo decays are measured for eighteen crystalline phosphides and phosphorus chalcogenides and compared with simulations, based on t...
Gespeichert in:
Veröffentlicht in: | Solid state nuclear magnetic resonance 1992-06, Vol.1 (2), p.73-83 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 83 |
---|---|
container_issue | 2 |
container_start_page | 73 |
container_title | Solid state nuclear magnetic resonance |
container_volume | 1 |
creator | Lathrop, David Franke, Deanna Maxwell, Robert Tepe, Thomas Flesher, Robert Zhang, Zhengming Eckert, Hellmut |
description | The ability of the 90°−
t
1−180° pulse sequence to produce accurate dipole-dipole coupling information in solids is investigated. To this end, the experimental
31P spin echo decays are measured for eighteen crystalline phosphides and phosphorus chalcogenides and compared with simulations, based on the known internuclear distances in these compounds. The experimental results are generally found accurate in compounds where the dominant contribution to the dipole-dipole coupling arises from nuclei in structurally inequivalent sites with large chemical shift anisotropies. For this situation, the quantum mechanical “flip-flop” term in the dipolar Hamiltonian is suppressed and the dipole-dipole coupling is entirely heteronuclear in character. All of those compounds that do not obey this condition show accelerated spin echo decays due to a fractional contribution of the flip-flop term and possibly incomplete refocusing of chemical shift terms on the time scale of the experiment. The results confirm on an empirical basis that the spin echo NMR technique can provide accurate dipole-dipole coupling information (and thus distance distributions) in disordered solids and glasses. |
doi_str_mv | 10.1016/0926-2040(92)90019-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_75529391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0926204092900196</els_id><sourcerecordid>75529391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2049-6cc497c93e8100e6955536b9c4f903612e339af77b07ab1679a92d113386fd9f3</originalsourceid><addsrcrecordid>eNp9kMlOwzAQhi0EKqXwBiDlhOAQ8JLYnQsSKrvKIgRny3EcMEriYDdIfXtcUsGNw8wc_n-2D6F9gk8IJvwUA-UpxRk-AnoMGBNI-QYak5yKlDHKN9H417KNdkL4wBgLwvgIjWLOBYExuruwnauVTxh5Sh7un5PQGb3wLmjXLRNXJdovw0LVtW1NYlvn31RrddK9uxDD9yHRrulc35ZhF21Vqg5mb10n6PXq8mV2k84fr29n5_NUx0vijVpnIDQwMyUYGw55njNegM4qwIwTahgDVQlRYKEKwgUooCUhjE15VULFJuhwmNt599mbsJCNDdrUtWqN64MUeU6BAYnGbDDq-E_wppKdt43yS0mwXCGUKz5yxUcClT8IJY9tB-v5fdGY8q9pYBb1s0E38ckva7wM2ppWm9L6yE6Wzv6_4BubeX7s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>75529391</pqid></control><display><type>article</type><title>Dipolar 31P NMR spectroscopy of crystalline inorganic phosphorus compounds</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Lathrop, David ; Franke, Deanna ; Maxwell, Robert ; Tepe, Thomas ; Flesher, Robert ; Zhang, Zhengming ; Eckert, Hellmut</creator><creatorcontrib>Lathrop, David ; Franke, Deanna ; Maxwell, Robert ; Tepe, Thomas ; Flesher, Robert ; Zhang, Zhengming ; Eckert, Hellmut</creatorcontrib><description>The ability of the 90°−
t
1−180° pulse sequence to produce accurate dipole-dipole coupling information in solids is investigated. To this end, the experimental
31P spin echo decays are measured for eighteen crystalline phosphides and phosphorus chalcogenides and compared with simulations, based on the known internuclear distances in these compounds. The experimental results are generally found accurate in compounds where the dominant contribution to the dipole-dipole coupling arises from nuclei in structurally inequivalent sites with large chemical shift anisotropies. For this situation, the quantum mechanical “flip-flop” term in the dipolar Hamiltonian is suppressed and the dipole-dipole coupling is entirely heteronuclear in character. All of those compounds that do not obey this condition show accelerated spin echo decays due to a fractional contribution of the flip-flop term and possibly incomplete refocusing of chemical shift terms on the time scale of the experiment. The results confirm on an empirical basis that the spin echo NMR technique can provide accurate dipole-dipole coupling information (and thus distance distributions) in disordered solids and glasses.</description><identifier>ISSN: 0926-2040</identifier><identifier>EISSN: 1527-3326</identifier><identifier>DOI: 10.1016/0926-2040(92)90019-6</identifier><identifier>PMID: 1365719</identifier><language>eng</language><publisher>Netherlands: Elsevier Inc</publisher><subject>Crystallization ; dipolar coupling ; Magnetic Resonance Spectroscopy - methods ; Models, Chemical ; Molecular Structure ; phosphides ; Phosphorus - chemistry ; solid state NMR</subject><ispartof>Solid state nuclear magnetic resonance, 1992-06, Vol.1 (2), p.73-83</ispartof><rights>1992</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2049-6cc497c93e8100e6955536b9c4f903612e339af77b07ab1679a92d113386fd9f3</citedby><cites>FETCH-LOGICAL-c2049-6cc497c93e8100e6955536b9c4f903612e339af77b07ab1679a92d113386fd9f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0926-2040(92)90019-6$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/1365719$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lathrop, David</creatorcontrib><creatorcontrib>Franke, Deanna</creatorcontrib><creatorcontrib>Maxwell, Robert</creatorcontrib><creatorcontrib>Tepe, Thomas</creatorcontrib><creatorcontrib>Flesher, Robert</creatorcontrib><creatorcontrib>Zhang, Zhengming</creatorcontrib><creatorcontrib>Eckert, Hellmut</creatorcontrib><title>Dipolar 31P NMR spectroscopy of crystalline inorganic phosphorus compounds</title><title>Solid state nuclear magnetic resonance</title><addtitle>Solid State Nucl Magn Reson</addtitle><description>The ability of the 90°−
t
1−180° pulse sequence to produce accurate dipole-dipole coupling information in solids is investigated. To this end, the experimental
31P spin echo decays are measured for eighteen crystalline phosphides and phosphorus chalcogenides and compared with simulations, based on the known internuclear distances in these compounds. The experimental results are generally found accurate in compounds where the dominant contribution to the dipole-dipole coupling arises from nuclei in structurally inequivalent sites with large chemical shift anisotropies. For this situation, the quantum mechanical “flip-flop” term in the dipolar Hamiltonian is suppressed and the dipole-dipole coupling is entirely heteronuclear in character. All of those compounds that do not obey this condition show accelerated spin echo decays due to a fractional contribution of the flip-flop term and possibly incomplete refocusing of chemical shift terms on the time scale of the experiment. The results confirm on an empirical basis that the spin echo NMR technique can provide accurate dipole-dipole coupling information (and thus distance distributions) in disordered solids and glasses.</description><subject>Crystallization</subject><subject>dipolar coupling</subject><subject>Magnetic Resonance Spectroscopy - methods</subject><subject>Models, Chemical</subject><subject>Molecular Structure</subject><subject>phosphides</subject><subject>Phosphorus - chemistry</subject><subject>solid state NMR</subject><issn>0926-2040</issn><issn>1527-3326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMlOwzAQhi0EKqXwBiDlhOAQ8JLYnQsSKrvKIgRny3EcMEriYDdIfXtcUsGNw8wc_n-2D6F9gk8IJvwUA-UpxRk-AnoMGBNI-QYak5yKlDHKN9H417KNdkL4wBgLwvgIjWLOBYExuruwnauVTxh5Sh7un5PQGb3wLmjXLRNXJdovw0LVtW1NYlvn31RrddK9uxDD9yHRrulc35ZhF21Vqg5mb10n6PXq8mV2k84fr29n5_NUx0vijVpnIDQwMyUYGw55njNegM4qwIwTahgDVQlRYKEKwgUooCUhjE15VULFJuhwmNt599mbsJCNDdrUtWqN64MUeU6BAYnGbDDq-E_wppKdt43yS0mwXCGUKz5yxUcClT8IJY9tB-v5fdGY8q9pYBb1s0E38ckva7wM2ppWm9L6yE6Wzv6_4BubeX7s</recordid><startdate>199206</startdate><enddate>199206</enddate><creator>Lathrop, David</creator><creator>Franke, Deanna</creator><creator>Maxwell, Robert</creator><creator>Tepe, Thomas</creator><creator>Flesher, Robert</creator><creator>Zhang, Zhengming</creator><creator>Eckert, Hellmut</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>199206</creationdate><title>Dipolar 31P NMR spectroscopy of crystalline inorganic phosphorus compounds</title><author>Lathrop, David ; Franke, Deanna ; Maxwell, Robert ; Tepe, Thomas ; Flesher, Robert ; Zhang, Zhengming ; Eckert, Hellmut</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2049-6cc497c93e8100e6955536b9c4f903612e339af77b07ab1679a92d113386fd9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Crystallization</topic><topic>dipolar coupling</topic><topic>Magnetic Resonance Spectroscopy - methods</topic><topic>Models, Chemical</topic><topic>Molecular Structure</topic><topic>phosphides</topic><topic>Phosphorus - chemistry</topic><topic>solid state NMR</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lathrop, David</creatorcontrib><creatorcontrib>Franke, Deanna</creatorcontrib><creatorcontrib>Maxwell, Robert</creatorcontrib><creatorcontrib>Tepe, Thomas</creatorcontrib><creatorcontrib>Flesher, Robert</creatorcontrib><creatorcontrib>Zhang, Zhengming</creatorcontrib><creatorcontrib>Eckert, Hellmut</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Solid state nuclear magnetic resonance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lathrop, David</au><au>Franke, Deanna</au><au>Maxwell, Robert</au><au>Tepe, Thomas</au><au>Flesher, Robert</au><au>Zhang, Zhengming</au><au>Eckert, Hellmut</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dipolar 31P NMR spectroscopy of crystalline inorganic phosphorus compounds</atitle><jtitle>Solid state nuclear magnetic resonance</jtitle><addtitle>Solid State Nucl Magn Reson</addtitle><date>1992-06</date><risdate>1992</risdate><volume>1</volume><issue>2</issue><spage>73</spage><epage>83</epage><pages>73-83</pages><issn>0926-2040</issn><eissn>1527-3326</eissn><abstract>The ability of the 90°−
t
1−180° pulse sequence to produce accurate dipole-dipole coupling information in solids is investigated. To this end, the experimental
31P spin echo decays are measured for eighteen crystalline phosphides and phosphorus chalcogenides and compared with simulations, based on the known internuclear distances in these compounds. The experimental results are generally found accurate in compounds where the dominant contribution to the dipole-dipole coupling arises from nuclei in structurally inequivalent sites with large chemical shift anisotropies. For this situation, the quantum mechanical “flip-flop” term in the dipolar Hamiltonian is suppressed and the dipole-dipole coupling is entirely heteronuclear in character. All of those compounds that do not obey this condition show accelerated spin echo decays due to a fractional contribution of the flip-flop term and possibly incomplete refocusing of chemical shift terms on the time scale of the experiment. The results confirm on an empirical basis that the spin echo NMR technique can provide accurate dipole-dipole coupling information (and thus distance distributions) in disordered solids and glasses.</abstract><cop>Netherlands</cop><pub>Elsevier Inc</pub><pmid>1365719</pmid><doi>10.1016/0926-2040(92)90019-6</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0926-2040 |
ispartof | Solid state nuclear magnetic resonance, 1992-06, Vol.1 (2), p.73-83 |
issn | 0926-2040 1527-3326 |
language | eng |
recordid | cdi_proquest_miscellaneous_75529391 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Crystallization dipolar coupling Magnetic Resonance Spectroscopy - methods Models, Chemical Molecular Structure phosphides Phosphorus - chemistry solid state NMR |
title | Dipolar 31P NMR spectroscopy of crystalline inorganic phosphorus compounds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A25%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dipolar%2031P%20NMR%20spectroscopy%20of%20crystalline%20inorganic%20phosphorus%20compounds&rft.jtitle=Solid%20state%20nuclear%20magnetic%20resonance&rft.au=Lathrop,%20David&rft.date=1992-06&rft.volume=1&rft.issue=2&rft.spage=73&rft.epage=83&rft.pages=73-83&rft.issn=0926-2040&rft.eissn=1527-3326&rft_id=info:doi/10.1016/0926-2040(92)90019-6&rft_dat=%3Cproquest_cross%3E75529391%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=75529391&rft_id=info:pmid/1365719&rft_els_id=0926204092900196&rfr_iscdi=true |