Dipolar 31P NMR spectroscopy of crystalline inorganic phosphorus compounds

The ability of the 90°− t 1−180° pulse sequence to produce accurate dipole-dipole coupling information in solids is investigated. To this end, the experimental 31P spin echo decays are measured for eighteen crystalline phosphides and phosphorus chalcogenides and compared with simulations, based on t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solid state nuclear magnetic resonance 1992-06, Vol.1 (2), p.73-83
Hauptverfasser: Lathrop, David, Franke, Deanna, Maxwell, Robert, Tepe, Thomas, Flesher, Robert, Zhang, Zhengming, Eckert, Hellmut
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 83
container_issue 2
container_start_page 73
container_title Solid state nuclear magnetic resonance
container_volume 1
creator Lathrop, David
Franke, Deanna
Maxwell, Robert
Tepe, Thomas
Flesher, Robert
Zhang, Zhengming
Eckert, Hellmut
description The ability of the 90°− t 1−180° pulse sequence to produce accurate dipole-dipole coupling information in solids is investigated. To this end, the experimental 31P spin echo decays are measured for eighteen crystalline phosphides and phosphorus chalcogenides and compared with simulations, based on the known internuclear distances in these compounds. The experimental results are generally found accurate in compounds where the dominant contribution to the dipole-dipole coupling arises from nuclei in structurally inequivalent sites with large chemical shift anisotropies. For this situation, the quantum mechanical “flip-flop” term in the dipolar Hamiltonian is suppressed and the dipole-dipole coupling is entirely heteronuclear in character. All of those compounds that do not obey this condition show accelerated spin echo decays due to a fractional contribution of the flip-flop term and possibly incomplete refocusing of chemical shift terms on the time scale of the experiment. The results confirm on an empirical basis that the spin echo NMR technique can provide accurate dipole-dipole coupling information (and thus distance distributions) in disordered solids and glasses.
doi_str_mv 10.1016/0926-2040(92)90019-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_75529391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0926204092900196</els_id><sourcerecordid>75529391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2049-6cc497c93e8100e6955536b9c4f903612e339af77b07ab1679a92d113386fd9f3</originalsourceid><addsrcrecordid>eNp9kMlOwzAQhi0EKqXwBiDlhOAQ8JLYnQsSKrvKIgRny3EcMEriYDdIfXtcUsGNw8wc_n-2D6F9gk8IJvwUA-UpxRk-AnoMGBNI-QYak5yKlDHKN9H417KNdkL4wBgLwvgIjWLOBYExuruwnauVTxh5Sh7un5PQGb3wLmjXLRNXJdovw0LVtW1NYlvn31RrddK9uxDD9yHRrulc35ZhF21Vqg5mb10n6PXq8mV2k84fr29n5_NUx0vijVpnIDQwMyUYGw55njNegM4qwIwTahgDVQlRYKEKwgUooCUhjE15VULFJuhwmNt599mbsJCNDdrUtWqN64MUeU6BAYnGbDDq-E_wppKdt43yS0mwXCGUKz5yxUcClT8IJY9tB-v5fdGY8q9pYBb1s0E38ckva7wM2ppWm9L6yE6Wzv6_4BubeX7s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>75529391</pqid></control><display><type>article</type><title>Dipolar 31P NMR spectroscopy of crystalline inorganic phosphorus compounds</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Lathrop, David ; Franke, Deanna ; Maxwell, Robert ; Tepe, Thomas ; Flesher, Robert ; Zhang, Zhengming ; Eckert, Hellmut</creator><creatorcontrib>Lathrop, David ; Franke, Deanna ; Maxwell, Robert ; Tepe, Thomas ; Flesher, Robert ; Zhang, Zhengming ; Eckert, Hellmut</creatorcontrib><description>The ability of the 90°− t 1−180° pulse sequence to produce accurate dipole-dipole coupling information in solids is investigated. To this end, the experimental 31P spin echo decays are measured for eighteen crystalline phosphides and phosphorus chalcogenides and compared with simulations, based on the known internuclear distances in these compounds. The experimental results are generally found accurate in compounds where the dominant contribution to the dipole-dipole coupling arises from nuclei in structurally inequivalent sites with large chemical shift anisotropies. For this situation, the quantum mechanical “flip-flop” term in the dipolar Hamiltonian is suppressed and the dipole-dipole coupling is entirely heteronuclear in character. All of those compounds that do not obey this condition show accelerated spin echo decays due to a fractional contribution of the flip-flop term and possibly incomplete refocusing of chemical shift terms on the time scale of the experiment. The results confirm on an empirical basis that the spin echo NMR technique can provide accurate dipole-dipole coupling information (and thus distance distributions) in disordered solids and glasses.</description><identifier>ISSN: 0926-2040</identifier><identifier>EISSN: 1527-3326</identifier><identifier>DOI: 10.1016/0926-2040(92)90019-6</identifier><identifier>PMID: 1365719</identifier><language>eng</language><publisher>Netherlands: Elsevier Inc</publisher><subject>Crystallization ; dipolar coupling ; Magnetic Resonance Spectroscopy - methods ; Models, Chemical ; Molecular Structure ; phosphides ; Phosphorus - chemistry ; solid state NMR</subject><ispartof>Solid state nuclear magnetic resonance, 1992-06, Vol.1 (2), p.73-83</ispartof><rights>1992</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2049-6cc497c93e8100e6955536b9c4f903612e339af77b07ab1679a92d113386fd9f3</citedby><cites>FETCH-LOGICAL-c2049-6cc497c93e8100e6955536b9c4f903612e339af77b07ab1679a92d113386fd9f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0926-2040(92)90019-6$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/1365719$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lathrop, David</creatorcontrib><creatorcontrib>Franke, Deanna</creatorcontrib><creatorcontrib>Maxwell, Robert</creatorcontrib><creatorcontrib>Tepe, Thomas</creatorcontrib><creatorcontrib>Flesher, Robert</creatorcontrib><creatorcontrib>Zhang, Zhengming</creatorcontrib><creatorcontrib>Eckert, Hellmut</creatorcontrib><title>Dipolar 31P NMR spectroscopy of crystalline inorganic phosphorus compounds</title><title>Solid state nuclear magnetic resonance</title><addtitle>Solid State Nucl Magn Reson</addtitle><description>The ability of the 90°− t 1−180° pulse sequence to produce accurate dipole-dipole coupling information in solids is investigated. To this end, the experimental 31P spin echo decays are measured for eighteen crystalline phosphides and phosphorus chalcogenides and compared with simulations, based on the known internuclear distances in these compounds. The experimental results are generally found accurate in compounds where the dominant contribution to the dipole-dipole coupling arises from nuclei in structurally inequivalent sites with large chemical shift anisotropies. For this situation, the quantum mechanical “flip-flop” term in the dipolar Hamiltonian is suppressed and the dipole-dipole coupling is entirely heteronuclear in character. All of those compounds that do not obey this condition show accelerated spin echo decays due to a fractional contribution of the flip-flop term and possibly incomplete refocusing of chemical shift terms on the time scale of the experiment. The results confirm on an empirical basis that the spin echo NMR technique can provide accurate dipole-dipole coupling information (and thus distance distributions) in disordered solids and glasses.</description><subject>Crystallization</subject><subject>dipolar coupling</subject><subject>Magnetic Resonance Spectroscopy - methods</subject><subject>Models, Chemical</subject><subject>Molecular Structure</subject><subject>phosphides</subject><subject>Phosphorus - chemistry</subject><subject>solid state NMR</subject><issn>0926-2040</issn><issn>1527-3326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMlOwzAQhi0EKqXwBiDlhOAQ8JLYnQsSKrvKIgRny3EcMEriYDdIfXtcUsGNw8wc_n-2D6F9gk8IJvwUA-UpxRk-AnoMGBNI-QYak5yKlDHKN9H417KNdkL4wBgLwvgIjWLOBYExuruwnauVTxh5Sh7un5PQGb3wLmjXLRNXJdovw0LVtW1NYlvn31RrddK9uxDD9yHRrulc35ZhF21Vqg5mb10n6PXq8mV2k84fr29n5_NUx0vijVpnIDQwMyUYGw55njNegM4qwIwTahgDVQlRYKEKwgUooCUhjE15VULFJuhwmNt599mbsJCNDdrUtWqN64MUeU6BAYnGbDDq-E_wppKdt43yS0mwXCGUKz5yxUcClT8IJY9tB-v5fdGY8q9pYBb1s0E38ckva7wM2ppWm9L6yE6Wzv6_4BubeX7s</recordid><startdate>199206</startdate><enddate>199206</enddate><creator>Lathrop, David</creator><creator>Franke, Deanna</creator><creator>Maxwell, Robert</creator><creator>Tepe, Thomas</creator><creator>Flesher, Robert</creator><creator>Zhang, Zhengming</creator><creator>Eckert, Hellmut</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>199206</creationdate><title>Dipolar 31P NMR spectroscopy of crystalline inorganic phosphorus compounds</title><author>Lathrop, David ; Franke, Deanna ; Maxwell, Robert ; Tepe, Thomas ; Flesher, Robert ; Zhang, Zhengming ; Eckert, Hellmut</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2049-6cc497c93e8100e6955536b9c4f903612e339af77b07ab1679a92d113386fd9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Crystallization</topic><topic>dipolar coupling</topic><topic>Magnetic Resonance Spectroscopy - methods</topic><topic>Models, Chemical</topic><topic>Molecular Structure</topic><topic>phosphides</topic><topic>Phosphorus - chemistry</topic><topic>solid state NMR</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lathrop, David</creatorcontrib><creatorcontrib>Franke, Deanna</creatorcontrib><creatorcontrib>Maxwell, Robert</creatorcontrib><creatorcontrib>Tepe, Thomas</creatorcontrib><creatorcontrib>Flesher, Robert</creatorcontrib><creatorcontrib>Zhang, Zhengming</creatorcontrib><creatorcontrib>Eckert, Hellmut</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Solid state nuclear magnetic resonance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lathrop, David</au><au>Franke, Deanna</au><au>Maxwell, Robert</au><au>Tepe, Thomas</au><au>Flesher, Robert</au><au>Zhang, Zhengming</au><au>Eckert, Hellmut</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dipolar 31P NMR spectroscopy of crystalline inorganic phosphorus compounds</atitle><jtitle>Solid state nuclear magnetic resonance</jtitle><addtitle>Solid State Nucl Magn Reson</addtitle><date>1992-06</date><risdate>1992</risdate><volume>1</volume><issue>2</issue><spage>73</spage><epage>83</epage><pages>73-83</pages><issn>0926-2040</issn><eissn>1527-3326</eissn><abstract>The ability of the 90°− t 1−180° pulse sequence to produce accurate dipole-dipole coupling information in solids is investigated. To this end, the experimental 31P spin echo decays are measured for eighteen crystalline phosphides and phosphorus chalcogenides and compared with simulations, based on the known internuclear distances in these compounds. The experimental results are generally found accurate in compounds where the dominant contribution to the dipole-dipole coupling arises from nuclei in structurally inequivalent sites with large chemical shift anisotropies. For this situation, the quantum mechanical “flip-flop” term in the dipolar Hamiltonian is suppressed and the dipole-dipole coupling is entirely heteronuclear in character. All of those compounds that do not obey this condition show accelerated spin echo decays due to a fractional contribution of the flip-flop term and possibly incomplete refocusing of chemical shift terms on the time scale of the experiment. The results confirm on an empirical basis that the spin echo NMR technique can provide accurate dipole-dipole coupling information (and thus distance distributions) in disordered solids and glasses.</abstract><cop>Netherlands</cop><pub>Elsevier Inc</pub><pmid>1365719</pmid><doi>10.1016/0926-2040(92)90019-6</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0926-2040
ispartof Solid state nuclear magnetic resonance, 1992-06, Vol.1 (2), p.73-83
issn 0926-2040
1527-3326
language eng
recordid cdi_proquest_miscellaneous_75529391
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Crystallization
dipolar coupling
Magnetic Resonance Spectroscopy - methods
Models, Chemical
Molecular Structure
phosphides
Phosphorus - chemistry
solid state NMR
title Dipolar 31P NMR spectroscopy of crystalline inorganic phosphorus compounds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A25%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dipolar%2031P%20NMR%20spectroscopy%20of%20crystalline%20inorganic%20phosphorus%20compounds&rft.jtitle=Solid%20state%20nuclear%20magnetic%20resonance&rft.au=Lathrop,%20David&rft.date=1992-06&rft.volume=1&rft.issue=2&rft.spage=73&rft.epage=83&rft.pages=73-83&rft.issn=0926-2040&rft.eissn=1527-3326&rft_id=info:doi/10.1016/0926-2040(92)90019-6&rft_dat=%3Cproquest_cross%3E75529391%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=75529391&rft_id=info:pmid/1365719&rft_els_id=0926204092900196&rfr_iscdi=true