Temperature sensitivity of cardiac mitochondria in intertidal and subtidal triplefin fishes

The heart is acutely sensitive to temperature in aquatic ectotherms and appears to fail before any other organ as the thermal maximum is reached, although the exact cause of this failure remains unknown. The heart is highly aerobic and therefore dependent on mitochondrial oxidative phosphorylation (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology Biochemical, systemic, and environmental physiology, 2010-10, Vol.180 (7), p.979-990
Hauptverfasser: Hilton, Zoë, Clements, Kendall D, Hickey, Anthony J. R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 990
container_issue 7
container_start_page 979
container_title Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology
container_volume 180
creator Hilton, Zoë
Clements, Kendall D
Hickey, Anthony J. R
description The heart is acutely sensitive to temperature in aquatic ectotherms and appears to fail before any other organ as the thermal maximum is reached, although the exact cause of this failure remains unknown. The heart is highly aerobic and therefore dependent on mitochondrial oxidative phosphorylation (OXPHOS) to meet energy requirements, but the role of cardiac mitochondria in limiting heart function at high temperatures remains unclear. We used permeabilised ventricle fibres to explore heart mitochondrial function in situ in three closely related species of small New Zealand triplefin fishes in response to temperature. We compared this to measures of whole animal respiration rates and critical oxygen tensions in these fishes. Bellapiscis medius, an intertidal species, had the greatest tolerance to hypoxia at higher temperatures and had more efficient OXPHOS at 30°C than the two subtidal species Forsterygion varium and F. malcolmi. B. medius also displayed the highest cytochrome c oxidase flux, which may in part explain how B. medius tolerates higher temperatures and hypoxia. Triplefin heart mitochondria exhibit decreased coupling to phosphorylation with increasing temperature. This most likely impairs ATP supply to the heart at elevated temperatures, potentially contributing to heart failure at ecologically relevant temperatures.
doi_str_mv 10.1007/s00360-010-0477-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_755187307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>755187307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-ec16f32c2d0a3bc407b3676b1b2e45dc9e95766b26f370b3c782665b8280b0a53</originalsourceid><addsrcrecordid>eNp9kE2LFDEQhoMo7jj6A7xo48VTa1WSTjJHWfyCBQ_uguAhJOnq3Sz9MSZpYf-9GXpV8CCkCKGeeis8jD1HeIMA-m0GEApawFpS61Y_YDuUgrco1LeHbAeoZYudNmfsSc63ACDRyMfsjINUKIzese-XNB0pubImajLNOZb4M5a7Zhma4FIfXWimWJZws8x9iq6Jcz2FUom9Gxs3901e_fYoKR5HGioxxHxD-Sl7NLgx07P7e8-uPry_PP_UXnz5-Pn83UUbxEGWlgKqQfDAe3DCBwnaC6WVR89Jdn040KHTSnleKQ1eBG24Up033IAH14k9e73lHtPyY6Vc7BRzoHF0My1rtrrr0GgBupKv_iFvlzXN9XMV4gC8q_r2DDcopCXnRIM9pji5dGcR7Mm73bzb6t2evNtT8Iv74NVP1P-Z-C26AnwDcm3N15T-bv5f6sttaHCLddcpZnv1lQMKQGMOhqP4BYTHlu8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>752002514</pqid></control><display><type>article</type><title>Temperature sensitivity of cardiac mitochondria in intertidal and subtidal triplefin fishes</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Hilton, Zoë ; Clements, Kendall D ; Hickey, Anthony J. R</creator><creatorcontrib>Hilton, Zoë ; Clements, Kendall D ; Hickey, Anthony J. R</creatorcontrib><description>The heart is acutely sensitive to temperature in aquatic ectotherms and appears to fail before any other organ as the thermal maximum is reached, although the exact cause of this failure remains unknown. The heart is highly aerobic and therefore dependent on mitochondrial oxidative phosphorylation (OXPHOS) to meet energy requirements, but the role of cardiac mitochondria in limiting heart function at high temperatures remains unclear. We used permeabilised ventricle fibres to explore heart mitochondrial function in situ in three closely related species of small New Zealand triplefin fishes in response to temperature. We compared this to measures of whole animal respiration rates and critical oxygen tensions in these fishes. Bellapiscis medius, an intertidal species, had the greatest tolerance to hypoxia at higher temperatures and had more efficient OXPHOS at 30°C than the two subtidal species Forsterygion varium and F. malcolmi. B. medius also displayed the highest cytochrome c oxidase flux, which may in part explain how B. medius tolerates higher temperatures and hypoxia. Triplefin heart mitochondria exhibit decreased coupling to phosphorylation with increasing temperature. This most likely impairs ATP supply to the heart at elevated temperatures, potentially contributing to heart failure at ecologically relevant temperatures.</description><identifier>ISSN: 0174-1578</identifier><identifier>EISSN: 1432-136X</identifier><identifier>DOI: 10.1007/s00360-010-0477-7</identifier><identifier>PMID: 20461387</identifier><language>eng</language><publisher>Berlin/Heidelberg: Berlin/Heidelberg : Springer-Verlag</publisher><subject>Acclimatization - physiology ; Animal Physiology ; Animals ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Body Weight ; Electron Transport Complex IV - metabolism ; Heart - physiology ; Heart - physiopathology ; Heart Failure - physiopathology ; High temperature ; Human Physiology ; Hypoxia ; Life Sciences ; Mitochondria, Heart - metabolism ; Organ Size ; Original Paper ; Oxidative Phosphorylation ; Oxygen ; Perciformes - blood ; Perciformes - physiology ; Respiration ; Seawater ; Temperature ; Ventricular Function ; Zoology</subject><ispartof>Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology, 2010-10, Vol.180 (7), p.979-990</ispartof><rights>Springer-Verlag 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-ec16f32c2d0a3bc407b3676b1b2e45dc9e95766b26f370b3c782665b8280b0a53</citedby><cites>FETCH-LOGICAL-c394t-ec16f32c2d0a3bc407b3676b1b2e45dc9e95766b26f370b3c782665b8280b0a53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00360-010-0477-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00360-010-0477-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20461387$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hilton, Zoë</creatorcontrib><creatorcontrib>Clements, Kendall D</creatorcontrib><creatorcontrib>Hickey, Anthony J. R</creatorcontrib><title>Temperature sensitivity of cardiac mitochondria in intertidal and subtidal triplefin fishes</title><title>Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology</title><addtitle>J Comp Physiol B</addtitle><addtitle>J Comp Physiol B</addtitle><description>The heart is acutely sensitive to temperature in aquatic ectotherms and appears to fail before any other organ as the thermal maximum is reached, although the exact cause of this failure remains unknown. The heart is highly aerobic and therefore dependent on mitochondrial oxidative phosphorylation (OXPHOS) to meet energy requirements, but the role of cardiac mitochondria in limiting heart function at high temperatures remains unclear. We used permeabilised ventricle fibres to explore heart mitochondrial function in situ in three closely related species of small New Zealand triplefin fishes in response to temperature. We compared this to measures of whole animal respiration rates and critical oxygen tensions in these fishes. Bellapiscis medius, an intertidal species, had the greatest tolerance to hypoxia at higher temperatures and had more efficient OXPHOS at 30°C than the two subtidal species Forsterygion varium and F. malcolmi. B. medius also displayed the highest cytochrome c oxidase flux, which may in part explain how B. medius tolerates higher temperatures and hypoxia. Triplefin heart mitochondria exhibit decreased coupling to phosphorylation with increasing temperature. This most likely impairs ATP supply to the heart at elevated temperatures, potentially contributing to heart failure at ecologically relevant temperatures.</description><subject>Acclimatization - physiology</subject><subject>Animal Physiology</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Body Weight</subject><subject>Electron Transport Complex IV - metabolism</subject><subject>Heart - physiology</subject><subject>Heart - physiopathology</subject><subject>Heart Failure - physiopathology</subject><subject>High temperature</subject><subject>Human Physiology</subject><subject>Hypoxia</subject><subject>Life Sciences</subject><subject>Mitochondria, Heart - metabolism</subject><subject>Organ Size</subject><subject>Original Paper</subject><subject>Oxidative Phosphorylation</subject><subject>Oxygen</subject><subject>Perciformes - blood</subject><subject>Perciformes - physiology</subject><subject>Respiration</subject><subject>Seawater</subject><subject>Temperature</subject><subject>Ventricular Function</subject><subject>Zoology</subject><issn>0174-1578</issn><issn>1432-136X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE2LFDEQhoMo7jj6A7xo48VTa1WSTjJHWfyCBQ_uguAhJOnq3Sz9MSZpYf-9GXpV8CCkCKGeeis8jD1HeIMA-m0GEApawFpS61Y_YDuUgrco1LeHbAeoZYudNmfsSc63ACDRyMfsjINUKIzese-XNB0pubImajLNOZb4M5a7Zhma4FIfXWimWJZws8x9iq6Jcz2FUom9Gxs3901e_fYoKR5HGioxxHxD-Sl7NLgx07P7e8-uPry_PP_UXnz5-Pn83UUbxEGWlgKqQfDAe3DCBwnaC6WVR89Jdn040KHTSnleKQ1eBG24Up033IAH14k9e73lHtPyY6Vc7BRzoHF0My1rtrrr0GgBupKv_iFvlzXN9XMV4gC8q_r2DDcopCXnRIM9pji5dGcR7Mm73bzb6t2evNtT8Iv74NVP1P-Z-C26AnwDcm3N15T-bv5f6sttaHCLddcpZnv1lQMKQGMOhqP4BYTHlu8</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Hilton, Zoë</creator><creator>Clements, Kendall D</creator><creator>Hickey, Anthony J. R</creator><general>Berlin/Heidelberg : Springer-Verlag</general><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QR</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>7X8</scope></search><sort><creationdate>20101001</creationdate><title>Temperature sensitivity of cardiac mitochondria in intertidal and subtidal triplefin fishes</title><author>Hilton, Zoë ; Clements, Kendall D ; Hickey, Anthony J. R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-ec16f32c2d0a3bc407b3676b1b2e45dc9e95766b26f370b3c782665b8280b0a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Acclimatization - physiology</topic><topic>Animal Physiology</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Body Weight</topic><topic>Electron Transport Complex IV - metabolism</topic><topic>Heart - physiology</topic><topic>Heart - physiopathology</topic><topic>Heart Failure - physiopathology</topic><topic>High temperature</topic><topic>Human Physiology</topic><topic>Hypoxia</topic><topic>Life Sciences</topic><topic>Mitochondria, Heart - metabolism</topic><topic>Organ Size</topic><topic>Original Paper</topic><topic>Oxidative Phosphorylation</topic><topic>Oxygen</topic><topic>Perciformes - blood</topic><topic>Perciformes - physiology</topic><topic>Respiration</topic><topic>Seawater</topic><topic>Temperature</topic><topic>Ventricular Function</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hilton, Zoë</creatorcontrib><creatorcontrib>Clements, Kendall D</creatorcontrib><creatorcontrib>Hickey, Anthony J. R</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hilton, Zoë</au><au>Clements, Kendall D</au><au>Hickey, Anthony J. R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature sensitivity of cardiac mitochondria in intertidal and subtidal triplefin fishes</atitle><jtitle>Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology</jtitle><stitle>J Comp Physiol B</stitle><addtitle>J Comp Physiol B</addtitle><date>2010-10-01</date><risdate>2010</risdate><volume>180</volume><issue>7</issue><spage>979</spage><epage>990</epage><pages>979-990</pages><issn>0174-1578</issn><eissn>1432-136X</eissn><abstract>The heart is acutely sensitive to temperature in aquatic ectotherms and appears to fail before any other organ as the thermal maximum is reached, although the exact cause of this failure remains unknown. The heart is highly aerobic and therefore dependent on mitochondrial oxidative phosphorylation (OXPHOS) to meet energy requirements, but the role of cardiac mitochondria in limiting heart function at high temperatures remains unclear. We used permeabilised ventricle fibres to explore heart mitochondrial function in situ in three closely related species of small New Zealand triplefin fishes in response to temperature. We compared this to measures of whole animal respiration rates and critical oxygen tensions in these fishes. Bellapiscis medius, an intertidal species, had the greatest tolerance to hypoxia at higher temperatures and had more efficient OXPHOS at 30°C than the two subtidal species Forsterygion varium and F. malcolmi. B. medius also displayed the highest cytochrome c oxidase flux, which may in part explain how B. medius tolerates higher temperatures and hypoxia. Triplefin heart mitochondria exhibit decreased coupling to phosphorylation with increasing temperature. This most likely impairs ATP supply to the heart at elevated temperatures, potentially contributing to heart failure at ecologically relevant temperatures.</abstract><cop>Berlin/Heidelberg</cop><pub>Berlin/Heidelberg : Springer-Verlag</pub><pmid>20461387</pmid><doi>10.1007/s00360-010-0477-7</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0174-1578
ispartof Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology, 2010-10, Vol.180 (7), p.979-990
issn 0174-1578
1432-136X
language eng
recordid cdi_proquest_miscellaneous_755187307
source MEDLINE; SpringerNature Journals
subjects Acclimatization - physiology
Animal Physiology
Animals
Biochemistry
Biomedical and Life Sciences
Biomedicine
Body Weight
Electron Transport Complex IV - metabolism
Heart - physiology
Heart - physiopathology
Heart Failure - physiopathology
High temperature
Human Physiology
Hypoxia
Life Sciences
Mitochondria, Heart - metabolism
Organ Size
Original Paper
Oxidative Phosphorylation
Oxygen
Perciformes - blood
Perciformes - physiology
Respiration
Seawater
Temperature
Ventricular Function
Zoology
title Temperature sensitivity of cardiac mitochondria in intertidal and subtidal triplefin fishes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T10%3A09%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature%20sensitivity%20of%20cardiac%20mitochondria%20in%20intertidal%20and%20subtidal%20triplefin%20fishes&rft.jtitle=Journal%20of%20comparative%20physiology.%20B,%20Biochemical,%20systemic,%20and%20environmental%20physiology&rft.au=Hilton,%20Zo%C3%AB&rft.date=2010-10-01&rft.volume=180&rft.issue=7&rft.spage=979&rft.epage=990&rft.pages=979-990&rft.issn=0174-1578&rft.eissn=1432-136X&rft_id=info:doi/10.1007/s00360-010-0477-7&rft_dat=%3Cproquest_cross%3E755187307%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=752002514&rft_id=info:pmid/20461387&rfr_iscdi=true