Modeling acclimation of photosynthesis to temperature in evergreen conifer forests

In this study, we used a canopy photosynthesis model which describes changes in photosynthetic capacity with slow temperature-dependent acclimations. A flux-partitioning algorithm was applied to fit the photosynthesis model to net ecosystem exchange data for 12 evergreen coniferous forests from nort...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist 2010-10, Vol.188 (1), p.175-186
Hauptverfasser: Gea-Izquierdo, Guillermo, Mäkelä, Annikki, Margolis, Hank, Bergeron, Yves, Black, T. Andrew, Dunn, Allison, Hadley, Julian, Paw U., Kyaw Tha, Falk, Matthias, Wharton, Sonia, Monson, Russell, Hollinger, David Y, Laurila, Tuomas, Aurela, Mika, McCaughey, Harry, Bourque, Charles, Vesala, Timo, Berninger, Frank
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 186
container_issue 1
container_start_page 175
container_title The New phytologist
container_volume 188
creator Gea-Izquierdo, Guillermo
Mäkelä, Annikki
Margolis, Hank
Bergeron, Yves
Black, T. Andrew
Dunn, Allison
Hadley, Julian
Paw U., Kyaw Tha
Falk, Matthias
Wharton, Sonia
Monson, Russell
Hollinger, David Y
Laurila, Tuomas
Aurela, Mika
McCaughey, Harry
Bourque, Charles
Vesala, Timo
Berninger, Frank
description In this study, we used a canopy photosynthesis model which describes changes in photosynthetic capacity with slow temperature-dependent acclimations. A flux-partitioning algorithm was applied to fit the photosynthesis model to net ecosystem exchange data for 12 evergreen coniferous forests from northern temperate and boreal regions. The model accounted for much of the variation in photosynthetic production, with modeling efficiencies (mean > 67%) similar to those of more complex models. The parameter describing the rate of acclimation was larger at the northern sites, leading to a slower acclimation of photosynthesis to temperature. The response of the rates of photosynthesis to air temperature in spring was delayed up to several days at the coldest sites. Overall photosynthesis acclimation processes were slower at colder, northern locations than at warmer, more southern, and more maritime sites. Consequently, slow changes in photosynthetic capacity were essential to explaining variations of photosynthesis for colder boreal forests (i.e. where acclimation of photosynthesis to temperature was slower), whereas the importance of these processes was minor in warmer conifer evergreen forests.
doi_str_mv 10.1111/j.1469-8137.2010.03367.x
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_755184711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40856391</jstor_id><sourcerecordid>40856391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5307-6a28f226aa4547c05aec7c1a24c954e7a3c98ce66fba74375c15afed90f983033</originalsourceid><addsrcrecordid>eNqNkEtPGzEUhS1UBIHyEwDvuppgj5-z6KKKWqjEo2qL1J1lnOvgaDIO9qSQf4-nA1nXG1v3nnOu74cQpmRKy7lYTimXTaUpU9OalCphTKrpyx6a7Bof0ISQWleSyz-H6CjnJSGkEbI-QIc1kVQ3VE_Qz5s4hzZ0C2yda8PK9iF2OHq8fox9zNuuf4QcMu4j7mG1hmT7TQIcOgx_IS0SQIdd7IKHhH1MkPv8Ee1722Y4ebuP0f23r79nV9X13eX32ZfryglGVCVtrX1dS2u54MoRYcEpR23NXSM4KMtcox1I6R-s4kwJR4X1MG-IbzQrCx-jT2PuOsWnTZlsViE7aFvbQdxko4SgmitKi1KPSpdizgm8WaeyatoaSswA1CzNwM0M3MwA1PwDal6K9extyOZhBfOd8Z1gEXweBc-hhe1_B5vbH1fDq_hPR_8y9zHt_JxoIVkz_P187HsbjV2kkM39r5LECNWaF5DsFROzmFU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>755184711</pqid></control><display><type>article</type><title>Modeling acclimation of photosynthesis to temperature in evergreen conifer forests</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via Wiley Online Library</source><source>JSTOR Archive Collection A-Z Listing</source><source>IngentaConnect Free/Open Access Journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>Gea-Izquierdo, Guillermo ; Mäkelä, Annikki ; Margolis, Hank ; Bergeron, Yves ; Black, T. Andrew ; Dunn, Allison ; Hadley, Julian ; Paw U., Kyaw Tha ; Falk, Matthias ; Wharton, Sonia ; Monson, Russell ; Hollinger, David Y ; Laurila, Tuomas ; Aurela, Mika ; McCaughey, Harry ; Bourque, Charles ; Vesala, Timo ; Berninger, Frank</creator><creatorcontrib>Gea-Izquierdo, Guillermo ; Mäkelä, Annikki ; Margolis, Hank ; Bergeron, Yves ; Black, T. Andrew ; Dunn, Allison ; Hadley, Julian ; Paw U., Kyaw Tha ; Falk, Matthias ; Wharton, Sonia ; Monson, Russell ; Hollinger, David Y ; Laurila, Tuomas ; Aurela, Mika ; McCaughey, Harry ; Bourque, Charles ; Vesala, Timo ; Berninger, Frank</creatorcontrib><description>In this study, we used a canopy photosynthesis model which describes changes in photosynthetic capacity with slow temperature-dependent acclimations. A flux-partitioning algorithm was applied to fit the photosynthesis model to net ecosystem exchange data for 12 evergreen coniferous forests from northern temperate and boreal regions. The model accounted for much of the variation in photosynthetic production, with modeling efficiencies (mean &gt; 67%) similar to those of more complex models. The parameter describing the rate of acclimation was larger at the northern sites, leading to a slower acclimation of photosynthesis to temperature. The response of the rates of photosynthesis to air temperature in spring was delayed up to several days at the coldest sites. Overall photosynthesis acclimation processes were slower at colder, northern locations than at warmer, more southern, and more maritime sites. Consequently, slow changes in photosynthetic capacity were essential to explaining variations of photosynthesis for colder boreal forests (i.e. where acclimation of photosynthesis to temperature was slower), whereas the importance of these processes was minor in warmer conifer evergreen forests.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/j.1469-8137.2010.03367.x</identifier><identifier>PMID: 20618918</identifier><language>eng</language><publisher>Oxford, UK: Oxford, UK : Blackwell Publishing Ltd</publisher><subject>Acclimatization ; Acclimatization - physiology ; boreal ecosystems ; Boreal forests ; carbon fluxes ; Coniferophyta - physiology ; Coniferous forests ; Ecological modeling ; Ecosystem models ; eddy covariance ; Forest ecosystems ; mechanistic models ; Modeling ; Models, Biological ; Net ecosystem exchange ; Parametric models ; Photosynthesis ; Photosynthesis - physiology ; Seasons ; Temperature ; temperature acclimation ; Time Factors ; Trees - physiology</subject><ispartof>The New phytologist, 2010-10, Vol.188 (1), p.175-186</ispartof><rights>2010 New Phytologist Trust</rights><rights>The Authors (2010). Journal compilation © New Phytologist Trust (2010)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5307-6a28f226aa4547c05aec7c1a24c954e7a3c98ce66fba74375c15afed90f983033</citedby><cites>FETCH-LOGICAL-c5307-6a28f226aa4547c05aec7c1a24c954e7a3c98ce66fba74375c15afed90f983033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40856391$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40856391$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,781,785,804,1418,1434,27926,27927,45576,45577,46411,46835,58019,58252</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20618918$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gea-Izquierdo, Guillermo</creatorcontrib><creatorcontrib>Mäkelä, Annikki</creatorcontrib><creatorcontrib>Margolis, Hank</creatorcontrib><creatorcontrib>Bergeron, Yves</creatorcontrib><creatorcontrib>Black, T. Andrew</creatorcontrib><creatorcontrib>Dunn, Allison</creatorcontrib><creatorcontrib>Hadley, Julian</creatorcontrib><creatorcontrib>Paw U., Kyaw Tha</creatorcontrib><creatorcontrib>Falk, Matthias</creatorcontrib><creatorcontrib>Wharton, Sonia</creatorcontrib><creatorcontrib>Monson, Russell</creatorcontrib><creatorcontrib>Hollinger, David Y</creatorcontrib><creatorcontrib>Laurila, Tuomas</creatorcontrib><creatorcontrib>Aurela, Mika</creatorcontrib><creatorcontrib>McCaughey, Harry</creatorcontrib><creatorcontrib>Bourque, Charles</creatorcontrib><creatorcontrib>Vesala, Timo</creatorcontrib><creatorcontrib>Berninger, Frank</creatorcontrib><title>Modeling acclimation of photosynthesis to temperature in evergreen conifer forests</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>In this study, we used a canopy photosynthesis model which describes changes in photosynthetic capacity with slow temperature-dependent acclimations. A flux-partitioning algorithm was applied to fit the photosynthesis model to net ecosystem exchange data for 12 evergreen coniferous forests from northern temperate and boreal regions. The model accounted for much of the variation in photosynthetic production, with modeling efficiencies (mean &gt; 67%) similar to those of more complex models. The parameter describing the rate of acclimation was larger at the northern sites, leading to a slower acclimation of photosynthesis to temperature. The response of the rates of photosynthesis to air temperature in spring was delayed up to several days at the coldest sites. Overall photosynthesis acclimation processes were slower at colder, northern locations than at warmer, more southern, and more maritime sites. Consequently, slow changes in photosynthetic capacity were essential to explaining variations of photosynthesis for colder boreal forests (i.e. where acclimation of photosynthesis to temperature was slower), whereas the importance of these processes was minor in warmer conifer evergreen forests.</description><subject>Acclimatization</subject><subject>Acclimatization - physiology</subject><subject>boreal ecosystems</subject><subject>Boreal forests</subject><subject>carbon fluxes</subject><subject>Coniferophyta - physiology</subject><subject>Coniferous forests</subject><subject>Ecological modeling</subject><subject>Ecosystem models</subject><subject>eddy covariance</subject><subject>Forest ecosystems</subject><subject>mechanistic models</subject><subject>Modeling</subject><subject>Models, Biological</subject><subject>Net ecosystem exchange</subject><subject>Parametric models</subject><subject>Photosynthesis</subject><subject>Photosynthesis - physiology</subject><subject>Seasons</subject><subject>Temperature</subject><subject>temperature acclimation</subject><subject>Time Factors</subject><subject>Trees - physiology</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkEtPGzEUhS1UBIHyEwDvuppgj5-z6KKKWqjEo2qL1J1lnOvgaDIO9qSQf4-nA1nXG1v3nnOu74cQpmRKy7lYTimXTaUpU9OalCphTKrpyx6a7Bof0ISQWleSyz-H6CjnJSGkEbI-QIc1kVQ3VE_Qz5s4hzZ0C2yda8PK9iF2OHq8fox9zNuuf4QcMu4j7mG1hmT7TQIcOgx_IS0SQIdd7IKHhH1MkPv8Ee1722Y4ebuP0f23r79nV9X13eX32ZfryglGVCVtrX1dS2u54MoRYcEpR23NXSM4KMtcox1I6R-s4kwJR4X1MG-IbzQrCx-jT2PuOsWnTZlsViE7aFvbQdxko4SgmitKi1KPSpdizgm8WaeyatoaSswA1CzNwM0M3MwA1PwDal6K9extyOZhBfOd8Z1gEXweBc-hhe1_B5vbH1fDq_hPR_8y9zHt_JxoIVkz_P187HsbjV2kkM39r5LECNWaF5DsFROzmFU</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Gea-Izquierdo, Guillermo</creator><creator>Mäkelä, Annikki</creator><creator>Margolis, Hank</creator><creator>Bergeron, Yves</creator><creator>Black, T. Andrew</creator><creator>Dunn, Allison</creator><creator>Hadley, Julian</creator><creator>Paw U., Kyaw Tha</creator><creator>Falk, Matthias</creator><creator>Wharton, Sonia</creator><creator>Monson, Russell</creator><creator>Hollinger, David Y</creator><creator>Laurila, Tuomas</creator><creator>Aurela, Mika</creator><creator>McCaughey, Harry</creator><creator>Bourque, Charles</creator><creator>Vesala, Timo</creator><creator>Berninger, Frank</creator><general>Oxford, UK : Blackwell Publishing Ltd</general><general>Blackwell Publishing</general><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201010</creationdate><title>Modeling acclimation of photosynthesis to temperature in evergreen conifer forests</title><author>Gea-Izquierdo, Guillermo ; Mäkelä, Annikki ; Margolis, Hank ; Bergeron, Yves ; Black, T. Andrew ; Dunn, Allison ; Hadley, Julian ; Paw U., Kyaw Tha ; Falk, Matthias ; Wharton, Sonia ; Monson, Russell ; Hollinger, David Y ; Laurila, Tuomas ; Aurela, Mika ; McCaughey, Harry ; Bourque, Charles ; Vesala, Timo ; Berninger, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5307-6a28f226aa4547c05aec7c1a24c954e7a3c98ce66fba74375c15afed90f983033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Acclimatization</topic><topic>Acclimatization - physiology</topic><topic>boreal ecosystems</topic><topic>Boreal forests</topic><topic>carbon fluxes</topic><topic>Coniferophyta - physiology</topic><topic>Coniferous forests</topic><topic>Ecological modeling</topic><topic>Ecosystem models</topic><topic>eddy covariance</topic><topic>Forest ecosystems</topic><topic>mechanistic models</topic><topic>Modeling</topic><topic>Models, Biological</topic><topic>Net ecosystem exchange</topic><topic>Parametric models</topic><topic>Photosynthesis</topic><topic>Photosynthesis - physiology</topic><topic>Seasons</topic><topic>Temperature</topic><topic>temperature acclimation</topic><topic>Time Factors</topic><topic>Trees - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gea-Izquierdo, Guillermo</creatorcontrib><creatorcontrib>Mäkelä, Annikki</creatorcontrib><creatorcontrib>Margolis, Hank</creatorcontrib><creatorcontrib>Bergeron, Yves</creatorcontrib><creatorcontrib>Black, T. Andrew</creatorcontrib><creatorcontrib>Dunn, Allison</creatorcontrib><creatorcontrib>Hadley, Julian</creatorcontrib><creatorcontrib>Paw U., Kyaw Tha</creatorcontrib><creatorcontrib>Falk, Matthias</creatorcontrib><creatorcontrib>Wharton, Sonia</creatorcontrib><creatorcontrib>Monson, Russell</creatorcontrib><creatorcontrib>Hollinger, David Y</creatorcontrib><creatorcontrib>Laurila, Tuomas</creatorcontrib><creatorcontrib>Aurela, Mika</creatorcontrib><creatorcontrib>McCaughey, Harry</creatorcontrib><creatorcontrib>Bourque, Charles</creatorcontrib><creatorcontrib>Vesala, Timo</creatorcontrib><creatorcontrib>Berninger, Frank</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gea-Izquierdo, Guillermo</au><au>Mäkelä, Annikki</au><au>Margolis, Hank</au><au>Bergeron, Yves</au><au>Black, T. Andrew</au><au>Dunn, Allison</au><au>Hadley, Julian</au><au>Paw U., Kyaw Tha</au><au>Falk, Matthias</au><au>Wharton, Sonia</au><au>Monson, Russell</au><au>Hollinger, David Y</au><au>Laurila, Tuomas</au><au>Aurela, Mika</au><au>McCaughey, Harry</au><au>Bourque, Charles</au><au>Vesala, Timo</au><au>Berninger, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling acclimation of photosynthesis to temperature in evergreen conifer forests</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2010-10</date><risdate>2010</risdate><volume>188</volume><issue>1</issue><spage>175</spage><epage>186</epage><pages>175-186</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>In this study, we used a canopy photosynthesis model which describes changes in photosynthetic capacity with slow temperature-dependent acclimations. A flux-partitioning algorithm was applied to fit the photosynthesis model to net ecosystem exchange data for 12 evergreen coniferous forests from northern temperate and boreal regions. The model accounted for much of the variation in photosynthetic production, with modeling efficiencies (mean &gt; 67%) similar to those of more complex models. The parameter describing the rate of acclimation was larger at the northern sites, leading to a slower acclimation of photosynthesis to temperature. The response of the rates of photosynthesis to air temperature in spring was delayed up to several days at the coldest sites. Overall photosynthesis acclimation processes were slower at colder, northern locations than at warmer, more southern, and more maritime sites. Consequently, slow changes in photosynthetic capacity were essential to explaining variations of photosynthesis for colder boreal forests (i.e. where acclimation of photosynthesis to temperature was slower), whereas the importance of these processes was minor in warmer conifer evergreen forests.</abstract><cop>Oxford, UK</cop><pub>Oxford, UK : Blackwell Publishing Ltd</pub><pmid>20618918</pmid><doi>10.1111/j.1469-8137.2010.03367.x</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2010-10, Vol.188 (1), p.175-186
issn 0028-646X
1469-8137
language eng
recordid cdi_proquest_miscellaneous_755184711
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via Wiley Online Library; JSTOR Archive Collection A-Z Listing; IngentaConnect Free/Open Access Journals; Wiley Online Library (Open Access Collection)
subjects Acclimatization
Acclimatization - physiology
boreal ecosystems
Boreal forests
carbon fluxes
Coniferophyta - physiology
Coniferous forests
Ecological modeling
Ecosystem models
eddy covariance
Forest ecosystems
mechanistic models
Modeling
Models, Biological
Net ecosystem exchange
Parametric models
Photosynthesis
Photosynthesis - physiology
Seasons
Temperature
temperature acclimation
Time Factors
Trees - physiology
title Modeling acclimation of photosynthesis to temperature in evergreen conifer forests
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T08%3A49%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20acclimation%20of%20photosynthesis%20to%20temperature%20in%20evergreen%20conifer%20forests&rft.jtitle=The%20New%20phytologist&rft.au=Gea-Izquierdo,%20Guillermo&rft.date=2010-10&rft.volume=188&rft.issue=1&rft.spage=175&rft.epage=186&rft.pages=175-186&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/j.1469-8137.2010.03367.x&rft_dat=%3Cjstor_proqu%3E40856391%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=755184711&rft_id=info:pmid/20618918&rft_jstor_id=40856391&rfr_iscdi=true