Tunable Band Gap in Hydrogenated Quasi-Free-Standing Graphene
We show by angle-resolved photoemission spectroscopy that a tunable gap in quasi-free-standing monolayer graphene on Au can be induced by hydrogenation. The size of the gap can be controlled via hydrogen loading and reaches ∼1.0 eV for a hydrogen coverage of 8%. The local rehybridization from sp2 to...
Gespeichert in:
Veröffentlicht in: | Nano letters 2010-09, Vol.10 (9), p.3360-3366 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3366 |
---|---|
container_issue | 9 |
container_start_page | 3360 |
container_title | Nano letters |
container_volume | 10 |
creator | Haberer, D Vyalikh, D. V Taioli, S Dora, B Farjam, M Fink, J Marchenko, D Pichler, T Ziegler, K Simonucci, S Dresselhaus, M. S Knupfer, M Büchner, B Grüneis, A |
description | We show by angle-resolved photoemission spectroscopy that a tunable gap in quasi-free-standing monolayer graphene on Au can be induced by hydrogenation. The size of the gap can be controlled via hydrogen loading and reaches ∼1.0 eV for a hydrogen coverage of 8%. The local rehybridization from sp2 to sp3 in the chemical bonding is observed by X-ray photoelectron spectroscopy and X-ray absorption and allows for a determination of the amount of chemisorbed hydrogen. The hydrogen induced gap formation is completely reversible by annealing without damaging the graphene. Calculations of the hydrogen loading dependent core level binding energies and the spectral function of graphene are in excellent agreement with photoemission experiments. Hydrogenation of graphene gives access to tunable electronic and optical properties and thereby provides a model system to study hydrogen storage in carbon materials. |
doi_str_mv | 10.1021/nl101066m |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_755179540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>755179540</sourcerecordid><originalsourceid>FETCH-LOGICAL-a344t-139953fb74bd578d9f2849c0532c3d2fc95ce215a77b1904d277fe2c97f5fee23</originalsourceid><addsrcrecordid>eNpt0D1PwzAQBmALgWgpDPwBlAUhhoA_4jgeGKCiBakSQpQ5cuxzSZU4wU6G_nuCWtqF6W549J7uReiS4DuCKbl3FcEEp2l9hMaEMxynUtLj_Z4lI3QWwhpjLBnHp2hEcSp5kogxelj2ThUVRE_KmWiu2qh00cvG-GYFTnVgovdehTKeeYD4oxtQ6VbR3Kv2CxycoxOrqgAXuzlBn7Pn5fQlXrzNX6ePi1ixJOliwqTkzBYiKQwXmZGWZonUmDOqmaFWS66BEq6EKIjEiaFCWKBaCsstAGUTdLPNbX3z3UPo8roMGqpKOWj6kAvOiRg-woO83UrtmxA82Lz1Za38Jic4_y0r35c12Ktdal_UYPbyr50BXO-AClpV1iuny3BwjJJsiDo4pUO-bnrvhjL-OfgDfyt7bg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>755179540</pqid></control><display><type>article</type><title>Tunable Band Gap in Hydrogenated Quasi-Free-Standing Graphene</title><source>American Chemical Society Journals</source><creator>Haberer, D ; Vyalikh, D. V ; Taioli, S ; Dora, B ; Farjam, M ; Fink, J ; Marchenko, D ; Pichler, T ; Ziegler, K ; Simonucci, S ; Dresselhaus, M. S ; Knupfer, M ; Büchner, B ; Grüneis, A</creator><creatorcontrib>Haberer, D ; Vyalikh, D. V ; Taioli, S ; Dora, B ; Farjam, M ; Fink, J ; Marchenko, D ; Pichler, T ; Ziegler, K ; Simonucci, S ; Dresselhaus, M. S ; Knupfer, M ; Büchner, B ; Grüneis, A</creatorcontrib><description>We show by angle-resolved photoemission spectroscopy that a tunable gap in quasi-free-standing monolayer graphene on Au can be induced by hydrogenation. The size of the gap can be controlled via hydrogen loading and reaches ∼1.0 eV for a hydrogen coverage of 8%. The local rehybridization from sp2 to sp3 in the chemical bonding is observed by X-ray photoelectron spectroscopy and X-ray absorption and allows for a determination of the amount of chemisorbed hydrogen. The hydrogen induced gap formation is completely reversible by annealing without damaging the graphene. Calculations of the hydrogen loading dependent core level binding energies and the spectral function of graphene are in excellent agreement with photoemission experiments. Hydrogenation of graphene gives access to tunable electronic and optical properties and thereby provides a model system to study hydrogen storage in carbon materials.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl101066m</identifier><identifier>PMID: 20695447</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Cross-disciplinary physics: materials science; rheology ; Electron and ion emission by liquids and solids; impact phenomena ; Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Electronic structure of nanoscale materials : clusters, nanoparticles, nanotubes, and nanocrystals ; Exact sciences and technology ; Fullerenes and related materials; diamonds, graphite ; Interfaces, heterostructures, nanostructures ; Materials science ; Photoemission and photoelectron spectra ; Physics ; Specific materials</subject><ispartof>Nano letters, 2010-09, Vol.10 (9), p.3360-3366</ispartof><rights>Copyright © 2010 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a344t-139953fb74bd578d9f2849c0532c3d2fc95ce215a77b1904d277fe2c97f5fee23</citedby><cites>FETCH-LOGICAL-a344t-139953fb74bd578d9f2849c0532c3d2fc95ce215a77b1904d277fe2c97f5fee23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nl101066m$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nl101066m$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23218106$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20695447$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Haberer, D</creatorcontrib><creatorcontrib>Vyalikh, D. V</creatorcontrib><creatorcontrib>Taioli, S</creatorcontrib><creatorcontrib>Dora, B</creatorcontrib><creatorcontrib>Farjam, M</creatorcontrib><creatorcontrib>Fink, J</creatorcontrib><creatorcontrib>Marchenko, D</creatorcontrib><creatorcontrib>Pichler, T</creatorcontrib><creatorcontrib>Ziegler, K</creatorcontrib><creatorcontrib>Simonucci, S</creatorcontrib><creatorcontrib>Dresselhaus, M. S</creatorcontrib><creatorcontrib>Knupfer, M</creatorcontrib><creatorcontrib>Büchner, B</creatorcontrib><creatorcontrib>Grüneis, A</creatorcontrib><title>Tunable Band Gap in Hydrogenated Quasi-Free-Standing Graphene</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>We show by angle-resolved photoemission spectroscopy that a tunable gap in quasi-free-standing monolayer graphene on Au can be induced by hydrogenation. The size of the gap can be controlled via hydrogen loading and reaches ∼1.0 eV for a hydrogen coverage of 8%. The local rehybridization from sp2 to sp3 in the chemical bonding is observed by X-ray photoelectron spectroscopy and X-ray absorption and allows for a determination of the amount of chemisorbed hydrogen. The hydrogen induced gap formation is completely reversible by annealing without damaging the graphene. Calculations of the hydrogen loading dependent core level binding energies and the spectral function of graphene are in excellent agreement with photoemission experiments. Hydrogenation of graphene gives access to tunable electronic and optical properties and thereby provides a model system to study hydrogen storage in carbon materials.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electron and ion emission by liquids and solids; impact phenomena</subject><subject>Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Electronic structure of nanoscale materials : clusters, nanoparticles, nanotubes, and nanocrystals</subject><subject>Exact sciences and technology</subject><subject>Fullerenes and related materials; diamonds, graphite</subject><subject>Interfaces, heterostructures, nanostructures</subject><subject>Materials science</subject><subject>Photoemission and photoelectron spectra</subject><subject>Physics</subject><subject>Specific materials</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpt0D1PwzAQBmALgWgpDPwBlAUhhoA_4jgeGKCiBakSQpQ5cuxzSZU4wU6G_nuCWtqF6W549J7uReiS4DuCKbl3FcEEp2l9hMaEMxynUtLj_Z4lI3QWwhpjLBnHp2hEcSp5kogxelj2ThUVRE_KmWiu2qh00cvG-GYFTnVgovdehTKeeYD4oxtQ6VbR3Kv2CxycoxOrqgAXuzlBn7Pn5fQlXrzNX6ePi1ixJOliwqTkzBYiKQwXmZGWZonUmDOqmaFWS66BEq6EKIjEiaFCWKBaCsstAGUTdLPNbX3z3UPo8roMGqpKOWj6kAvOiRg-woO83UrtmxA82Lz1Za38Jic4_y0r35c12Ktdal_UYPbyr50BXO-AClpV1iuny3BwjJJsiDo4pUO-bnrvhjL-OfgDfyt7bg</recordid><startdate>20100908</startdate><enddate>20100908</enddate><creator>Haberer, D</creator><creator>Vyalikh, D. V</creator><creator>Taioli, S</creator><creator>Dora, B</creator><creator>Farjam, M</creator><creator>Fink, J</creator><creator>Marchenko, D</creator><creator>Pichler, T</creator><creator>Ziegler, K</creator><creator>Simonucci, S</creator><creator>Dresselhaus, M. S</creator><creator>Knupfer, M</creator><creator>Büchner, B</creator><creator>Grüneis, A</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20100908</creationdate><title>Tunable Band Gap in Hydrogenated Quasi-Free-Standing Graphene</title><author>Haberer, D ; Vyalikh, D. V ; Taioli, S ; Dora, B ; Farjam, M ; Fink, J ; Marchenko, D ; Pichler, T ; Ziegler, K ; Simonucci, S ; Dresselhaus, M. S ; Knupfer, M ; Büchner, B ; Grüneis, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a344t-139953fb74bd578d9f2849c0532c3d2fc95ce215a77b1904d277fe2c97f5fee23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electron and ion emission by liquids and solids; impact phenomena</topic><topic>Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Electronic structure of nanoscale materials : clusters, nanoparticles, nanotubes, and nanocrystals</topic><topic>Exact sciences and technology</topic><topic>Fullerenes and related materials; diamonds, graphite</topic><topic>Interfaces, heterostructures, nanostructures</topic><topic>Materials science</topic><topic>Photoemission and photoelectron spectra</topic><topic>Physics</topic><topic>Specific materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haberer, D</creatorcontrib><creatorcontrib>Vyalikh, D. V</creatorcontrib><creatorcontrib>Taioli, S</creatorcontrib><creatorcontrib>Dora, B</creatorcontrib><creatorcontrib>Farjam, M</creatorcontrib><creatorcontrib>Fink, J</creatorcontrib><creatorcontrib>Marchenko, D</creatorcontrib><creatorcontrib>Pichler, T</creatorcontrib><creatorcontrib>Ziegler, K</creatorcontrib><creatorcontrib>Simonucci, S</creatorcontrib><creatorcontrib>Dresselhaus, M. S</creatorcontrib><creatorcontrib>Knupfer, M</creatorcontrib><creatorcontrib>Büchner, B</creatorcontrib><creatorcontrib>Grüneis, A</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haberer, D</au><au>Vyalikh, D. V</au><au>Taioli, S</au><au>Dora, B</au><au>Farjam, M</au><au>Fink, J</au><au>Marchenko, D</au><au>Pichler, T</au><au>Ziegler, K</au><au>Simonucci, S</au><au>Dresselhaus, M. S</au><au>Knupfer, M</au><au>Büchner, B</au><au>Grüneis, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tunable Band Gap in Hydrogenated Quasi-Free-Standing Graphene</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2010-09-08</date><risdate>2010</risdate><volume>10</volume><issue>9</issue><spage>3360</spage><epage>3366</epage><pages>3360-3366</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>We show by angle-resolved photoemission spectroscopy that a tunable gap in quasi-free-standing monolayer graphene on Au can be induced by hydrogenation. The size of the gap can be controlled via hydrogen loading and reaches ∼1.0 eV for a hydrogen coverage of 8%. The local rehybridization from sp2 to sp3 in the chemical bonding is observed by X-ray photoelectron spectroscopy and X-ray absorption and allows for a determination of the amount of chemisorbed hydrogen. The hydrogen induced gap formation is completely reversible by annealing without damaging the graphene. Calculations of the hydrogen loading dependent core level binding energies and the spectral function of graphene are in excellent agreement with photoemission experiments. Hydrogenation of graphene gives access to tunable electronic and optical properties and thereby provides a model system to study hydrogen storage in carbon materials.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>20695447</pmid><doi>10.1021/nl101066m</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2010-09, Vol.10 (9), p.3360-3366 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_755179540 |
source | American Chemical Society Journals |
subjects | Condensed matter: electronic structure, electrical, magnetic, and optical properties Cross-disciplinary physics: materials science rheology Electron and ion emission by liquids and solids impact phenomena Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures Electronic structure of nanoscale materials : clusters, nanoparticles, nanotubes, and nanocrystals Exact sciences and technology Fullerenes and related materials diamonds, graphite Interfaces, heterostructures, nanostructures Materials science Photoemission and photoelectron spectra Physics Specific materials |
title | Tunable Band Gap in Hydrogenated Quasi-Free-Standing Graphene |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T19%3A14%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tunable%20Band%20Gap%20in%20Hydrogenated%20Quasi-Free-Standing%20Graphene&rft.jtitle=Nano%20letters&rft.au=Haberer,%20D&rft.date=2010-09-08&rft.volume=10&rft.issue=9&rft.spage=3360&rft.epage=3366&rft.pages=3360-3366&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl101066m&rft_dat=%3Cproquest_cross%3E755179540%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=755179540&rft_id=info:pmid/20695447&rfr_iscdi=true |