Tunable Band Gap in Hydrogenated Quasi-Free-Standing Graphene

We show by angle-resolved photoemission spectroscopy that a tunable gap in quasi-free-standing monolayer graphene on Au can be induced by hydrogenation. The size of the gap can be controlled via hydrogen loading and reaches ∼1.0 eV for a hydrogen coverage of 8%. The local rehybridization from sp2 to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2010-09, Vol.10 (9), p.3360-3366
Hauptverfasser: Haberer, D, Vyalikh, D. V, Taioli, S, Dora, B, Farjam, M, Fink, J, Marchenko, D, Pichler, T, Ziegler, K, Simonucci, S, Dresselhaus, M. S, Knupfer, M, Büchner, B, Grüneis, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3366
container_issue 9
container_start_page 3360
container_title Nano letters
container_volume 10
creator Haberer, D
Vyalikh, D. V
Taioli, S
Dora, B
Farjam, M
Fink, J
Marchenko, D
Pichler, T
Ziegler, K
Simonucci, S
Dresselhaus, M. S
Knupfer, M
Büchner, B
Grüneis, A
description We show by angle-resolved photoemission spectroscopy that a tunable gap in quasi-free-standing monolayer graphene on Au can be induced by hydrogenation. The size of the gap can be controlled via hydrogen loading and reaches ∼1.0 eV for a hydrogen coverage of 8%. The local rehybridization from sp2 to sp3 in the chemical bonding is observed by X-ray photoelectron spectroscopy and X-ray absorption and allows for a determination of the amount of chemisorbed hydrogen. The hydrogen induced gap formation is completely reversible by annealing without damaging the graphene. Calculations of the hydrogen loading dependent core level binding energies and the spectral function of graphene are in excellent agreement with photoemission experiments. Hydrogenation of graphene gives access to tunable electronic and optical properties and thereby provides a model system to study hydrogen storage in carbon materials.
doi_str_mv 10.1021/nl101066m
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_755179540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>755179540</sourcerecordid><originalsourceid>FETCH-LOGICAL-a344t-139953fb74bd578d9f2849c0532c3d2fc95ce215a77b1904d277fe2c97f5fee23</originalsourceid><addsrcrecordid>eNpt0D1PwzAQBmALgWgpDPwBlAUhhoA_4jgeGKCiBakSQpQ5cuxzSZU4wU6G_nuCWtqF6W549J7uReiS4DuCKbl3FcEEp2l9hMaEMxynUtLj_Z4lI3QWwhpjLBnHp2hEcSp5kogxelj2ThUVRE_KmWiu2qh00cvG-GYFTnVgovdehTKeeYD4oxtQ6VbR3Kv2CxycoxOrqgAXuzlBn7Pn5fQlXrzNX6ePi1ixJOliwqTkzBYiKQwXmZGWZonUmDOqmaFWS66BEq6EKIjEiaFCWKBaCsstAGUTdLPNbX3z3UPo8roMGqpKOWj6kAvOiRg-woO83UrtmxA82Lz1Za38Jic4_y0r35c12Ktdal_UYPbyr50BXO-AClpV1iuny3BwjJJsiDo4pUO-bnrvhjL-OfgDfyt7bg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>755179540</pqid></control><display><type>article</type><title>Tunable Band Gap in Hydrogenated Quasi-Free-Standing Graphene</title><source>American Chemical Society Journals</source><creator>Haberer, D ; Vyalikh, D. V ; Taioli, S ; Dora, B ; Farjam, M ; Fink, J ; Marchenko, D ; Pichler, T ; Ziegler, K ; Simonucci, S ; Dresselhaus, M. S ; Knupfer, M ; Büchner, B ; Grüneis, A</creator><creatorcontrib>Haberer, D ; Vyalikh, D. V ; Taioli, S ; Dora, B ; Farjam, M ; Fink, J ; Marchenko, D ; Pichler, T ; Ziegler, K ; Simonucci, S ; Dresselhaus, M. S ; Knupfer, M ; Büchner, B ; Grüneis, A</creatorcontrib><description>We show by angle-resolved photoemission spectroscopy that a tunable gap in quasi-free-standing monolayer graphene on Au can be induced by hydrogenation. The size of the gap can be controlled via hydrogen loading and reaches ∼1.0 eV for a hydrogen coverage of 8%. The local rehybridization from sp2 to sp3 in the chemical bonding is observed by X-ray photoelectron spectroscopy and X-ray absorption and allows for a determination of the amount of chemisorbed hydrogen. The hydrogen induced gap formation is completely reversible by annealing without damaging the graphene. Calculations of the hydrogen loading dependent core level binding energies and the spectral function of graphene are in excellent agreement with photoemission experiments. Hydrogenation of graphene gives access to tunable electronic and optical properties and thereby provides a model system to study hydrogen storage in carbon materials.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl101066m</identifier><identifier>PMID: 20695447</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Cross-disciplinary physics: materials science; rheology ; Electron and ion emission by liquids and solids; impact phenomena ; Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Electronic structure of nanoscale materials : clusters, nanoparticles, nanotubes, and nanocrystals ; Exact sciences and technology ; Fullerenes and related materials; diamonds, graphite ; Interfaces, heterostructures, nanostructures ; Materials science ; Photoemission and photoelectron spectra ; Physics ; Specific materials</subject><ispartof>Nano letters, 2010-09, Vol.10 (9), p.3360-3366</ispartof><rights>Copyright © 2010 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a344t-139953fb74bd578d9f2849c0532c3d2fc95ce215a77b1904d277fe2c97f5fee23</citedby><cites>FETCH-LOGICAL-a344t-139953fb74bd578d9f2849c0532c3d2fc95ce215a77b1904d277fe2c97f5fee23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nl101066m$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nl101066m$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23218106$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20695447$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Haberer, D</creatorcontrib><creatorcontrib>Vyalikh, D. V</creatorcontrib><creatorcontrib>Taioli, S</creatorcontrib><creatorcontrib>Dora, B</creatorcontrib><creatorcontrib>Farjam, M</creatorcontrib><creatorcontrib>Fink, J</creatorcontrib><creatorcontrib>Marchenko, D</creatorcontrib><creatorcontrib>Pichler, T</creatorcontrib><creatorcontrib>Ziegler, K</creatorcontrib><creatorcontrib>Simonucci, S</creatorcontrib><creatorcontrib>Dresselhaus, M. S</creatorcontrib><creatorcontrib>Knupfer, M</creatorcontrib><creatorcontrib>Büchner, B</creatorcontrib><creatorcontrib>Grüneis, A</creatorcontrib><title>Tunable Band Gap in Hydrogenated Quasi-Free-Standing Graphene</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>We show by angle-resolved photoemission spectroscopy that a tunable gap in quasi-free-standing monolayer graphene on Au can be induced by hydrogenation. The size of the gap can be controlled via hydrogen loading and reaches ∼1.0 eV for a hydrogen coverage of 8%. The local rehybridization from sp2 to sp3 in the chemical bonding is observed by X-ray photoelectron spectroscopy and X-ray absorption and allows for a determination of the amount of chemisorbed hydrogen. The hydrogen induced gap formation is completely reversible by annealing without damaging the graphene. Calculations of the hydrogen loading dependent core level binding energies and the spectral function of graphene are in excellent agreement with photoemission experiments. Hydrogenation of graphene gives access to tunable electronic and optical properties and thereby provides a model system to study hydrogen storage in carbon materials.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electron and ion emission by liquids and solids; impact phenomena</subject><subject>Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Electronic structure of nanoscale materials : clusters, nanoparticles, nanotubes, and nanocrystals</subject><subject>Exact sciences and technology</subject><subject>Fullerenes and related materials; diamonds, graphite</subject><subject>Interfaces, heterostructures, nanostructures</subject><subject>Materials science</subject><subject>Photoemission and photoelectron spectra</subject><subject>Physics</subject><subject>Specific materials</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpt0D1PwzAQBmALgWgpDPwBlAUhhoA_4jgeGKCiBakSQpQ5cuxzSZU4wU6G_nuCWtqF6W549J7uReiS4DuCKbl3FcEEp2l9hMaEMxynUtLj_Z4lI3QWwhpjLBnHp2hEcSp5kogxelj2ThUVRE_KmWiu2qh00cvG-GYFTnVgovdehTKeeYD4oxtQ6VbR3Kv2CxycoxOrqgAXuzlBn7Pn5fQlXrzNX6ePi1ixJOliwqTkzBYiKQwXmZGWZonUmDOqmaFWS66BEq6EKIjEiaFCWKBaCsstAGUTdLPNbX3z3UPo8roMGqpKOWj6kAvOiRg-woO83UrtmxA82Lz1Za38Jic4_y0r35c12Ktdal_UYPbyr50BXO-AClpV1iuny3BwjJJsiDo4pUO-bnrvhjL-OfgDfyt7bg</recordid><startdate>20100908</startdate><enddate>20100908</enddate><creator>Haberer, D</creator><creator>Vyalikh, D. V</creator><creator>Taioli, S</creator><creator>Dora, B</creator><creator>Farjam, M</creator><creator>Fink, J</creator><creator>Marchenko, D</creator><creator>Pichler, T</creator><creator>Ziegler, K</creator><creator>Simonucci, S</creator><creator>Dresselhaus, M. S</creator><creator>Knupfer, M</creator><creator>Büchner, B</creator><creator>Grüneis, A</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20100908</creationdate><title>Tunable Band Gap in Hydrogenated Quasi-Free-Standing Graphene</title><author>Haberer, D ; Vyalikh, D. V ; Taioli, S ; Dora, B ; Farjam, M ; Fink, J ; Marchenko, D ; Pichler, T ; Ziegler, K ; Simonucci, S ; Dresselhaus, M. S ; Knupfer, M ; Büchner, B ; Grüneis, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a344t-139953fb74bd578d9f2849c0532c3d2fc95ce215a77b1904d277fe2c97f5fee23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electron and ion emission by liquids and solids; impact phenomena</topic><topic>Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Electronic structure of nanoscale materials : clusters, nanoparticles, nanotubes, and nanocrystals</topic><topic>Exact sciences and technology</topic><topic>Fullerenes and related materials; diamonds, graphite</topic><topic>Interfaces, heterostructures, nanostructures</topic><topic>Materials science</topic><topic>Photoemission and photoelectron spectra</topic><topic>Physics</topic><topic>Specific materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haberer, D</creatorcontrib><creatorcontrib>Vyalikh, D. V</creatorcontrib><creatorcontrib>Taioli, S</creatorcontrib><creatorcontrib>Dora, B</creatorcontrib><creatorcontrib>Farjam, M</creatorcontrib><creatorcontrib>Fink, J</creatorcontrib><creatorcontrib>Marchenko, D</creatorcontrib><creatorcontrib>Pichler, T</creatorcontrib><creatorcontrib>Ziegler, K</creatorcontrib><creatorcontrib>Simonucci, S</creatorcontrib><creatorcontrib>Dresselhaus, M. S</creatorcontrib><creatorcontrib>Knupfer, M</creatorcontrib><creatorcontrib>Büchner, B</creatorcontrib><creatorcontrib>Grüneis, A</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haberer, D</au><au>Vyalikh, D. V</au><au>Taioli, S</au><au>Dora, B</au><au>Farjam, M</au><au>Fink, J</au><au>Marchenko, D</au><au>Pichler, T</au><au>Ziegler, K</au><au>Simonucci, S</au><au>Dresselhaus, M. S</au><au>Knupfer, M</au><au>Büchner, B</au><au>Grüneis, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tunable Band Gap in Hydrogenated Quasi-Free-Standing Graphene</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2010-09-08</date><risdate>2010</risdate><volume>10</volume><issue>9</issue><spage>3360</spage><epage>3366</epage><pages>3360-3366</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>We show by angle-resolved photoemission spectroscopy that a tunable gap in quasi-free-standing monolayer graphene on Au can be induced by hydrogenation. The size of the gap can be controlled via hydrogen loading and reaches ∼1.0 eV for a hydrogen coverage of 8%. The local rehybridization from sp2 to sp3 in the chemical bonding is observed by X-ray photoelectron spectroscopy and X-ray absorption and allows for a determination of the amount of chemisorbed hydrogen. The hydrogen induced gap formation is completely reversible by annealing without damaging the graphene. Calculations of the hydrogen loading dependent core level binding energies and the spectral function of graphene are in excellent agreement with photoemission experiments. Hydrogenation of graphene gives access to tunable electronic and optical properties and thereby provides a model system to study hydrogen storage in carbon materials.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>20695447</pmid><doi>10.1021/nl101066m</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2010-09, Vol.10 (9), p.3360-3366
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_755179540
source American Chemical Society Journals
subjects Condensed matter: electronic structure, electrical, magnetic, and optical properties
Cross-disciplinary physics: materials science
rheology
Electron and ion emission by liquids and solids
impact phenomena
Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems
Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures
Electronic structure of nanoscale materials : clusters, nanoparticles, nanotubes, and nanocrystals
Exact sciences and technology
Fullerenes and related materials
diamonds, graphite
Interfaces, heterostructures, nanostructures
Materials science
Photoemission and photoelectron spectra
Physics
Specific materials
title Tunable Band Gap in Hydrogenated Quasi-Free-Standing Graphene
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T19%3A14%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tunable%20Band%20Gap%20in%20Hydrogenated%20Quasi-Free-Standing%20Graphene&rft.jtitle=Nano%20letters&rft.au=Haberer,%20D&rft.date=2010-09-08&rft.volume=10&rft.issue=9&rft.spage=3360&rft.epage=3366&rft.pages=3360-3366&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl101066m&rft_dat=%3Cproquest_cross%3E755179540%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=755179540&rft_id=info:pmid/20695447&rfr_iscdi=true