Synthesis, Electronic Structure, and Reactivity of Strained Nickel-, Palladium-, and Platinum-Bridged [1]Ferrocenophanes

The group 10 bis(phosphine)metalla[1]ferrocenophanes, [{Fe(η5-C5H4)2}M(Pn-Bu3)2] [M = Ni (4a), Pd (4b), and Pt (4c)], have been prepared by the reaction of Li2[Fe(η5-C5H4)2]·tmeda (5, tmeda = N,N,N′,N′-tetramethylethylenediamine) with trans-[MCl2(Pn-Bu3)2] [M = Ni (trans-6a) and Pd (trans-6b)] and c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2010-09, Vol.132 (38), p.13279-13289
Hauptverfasser: Matas, Inmaculada, Whittell, George R, Partridge, Benjamin M, Holland, Jason P, Haddow, Mairi F, Green, Jennifer C, Manners, Ian
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13289
container_issue 38
container_start_page 13279
container_title Journal of the American Chemical Society
container_volume 132
creator Matas, Inmaculada
Whittell, George R
Partridge, Benjamin M
Holland, Jason P
Haddow, Mairi F
Green, Jennifer C
Manners, Ian
description The group 10 bis(phosphine)metalla[1]ferrocenophanes, [{Fe(η5-C5H4)2}M(Pn-Bu3)2] [M = Ni (4a), Pd (4b), and Pt (4c)], have been prepared by the reaction of Li2[Fe(η5-C5H4)2]·tmeda (5, tmeda = N,N,N′,N′-tetramethylethylenediamine) with trans-[MCl2(Pn-Bu3)2] [M = Ni (trans-6a) and Pd (trans-6b)] and cis-[PtCl2(Pn-Bu3)2] (cis-6c), respectively. Single crystal X-ray diffraction revealed highly tilted, strained structures as characterized by α angles of 28.4° (4a), 24.5° (4b), and 25.2° (4c) and a distorted square planar environment for the group 10 metal center. UV/visible spectroscopy and cyclic voltammetry indicated that all three compounds had smaller HOMO−LUMO gaps and were more electron-rich in nature than ferrocene and other comparable [1]ferrocenophanes. DFT calculations suggested that these differences were principally due to the electron-releasing nature of the M(Pn-Bu3)2 metal−ligand fragments. Attempts to induce thermal or anionic ring-opening polymerization of 4a−c were unsuccessful and were complicated by, for example, competing ligand dissociation processes or unfavorable chain propagation. In contrast, these species all reacted rapidly with acids effecting clean extrusion of the bis(phosphine)metal fragment. Carbon monoxide inserted cleanly into one of the palladium−carbon bonds of 4b to afford the ring-expanded, acylated product [{Fe(η5-C5H4)(η5-C5H4)(CO)}Pd(Pn-Bu3)2] (10). The nickel analogue 4a, however, afforded [Ni(CO)2(Pn-Bu3)2] whereas the platinum-bridged complex 4c was inert. Remarkably, all compounds 4a−c were readily oxidized by elemental sulfur to afford the [5,5′]bicyclopentadienylidene (pentafulvalene) complexes [{η4:η0-C5H4(C5H4)}M(Pn-Bu3)2] [M = Ni (11a)] and [(η2-C10H8)M(Pn-Bu3)2] [M = Pd (11b) and Pt (11c)] by a formal 4-electron oxidation of the carbocyclic ligands. Compounds 11b and 11c represent the first examples of [5,5′]bicyclopentadienylidene as a neutral η2-ligand. The relative energies of η2-coordination with respect to that of η4:η0 bonding were investigated for 11a−c by DFT calculations.
doi_str_mv 10.1021/ja103367e
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_755174483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>755174483</sourcerecordid><originalsourceid>FETCH-LOGICAL-a380t-4aa4d3ffe3317fae12eba507d9069538bb6c15a56d355008088c68743efd82de3</originalsourceid><addsrcrecordid>eNpt0MtKxDAUBuAgio6XhS8g3YgIU82laeNSB28gKl5WIuVMcqoZO-mYpOK8vZFRV67CIR8_5_yEbDN6wChnhxNgVIiywiUyYJLTXDJeLpMBpZTnlSrFGlkPYZLGgiu2StY4VYxXhRiQz_u5i68YbBhmpy3q6DtndXYffa9j73GYgTPZHYKO9sPGedY1359gHZrs2uo3bPNhdgttC8b203zhb1uI1qXxxFvzkuQTez5D7zuNrpu9gsOwSVYaaANu_bwb5PHs9GF0kV_dnF-Ojq9yEIrGvAAojGgaFIJVDSDjOAZJK3NEyyMp1HhcaiZBlkZISamiSulSpdOwMYobFBtkb5E78917jyHWUxs0pn0ddn2oKylZVRRKJLm_kNp3IXhs6pm3U_DzmtH6u-f6r-dkd35S-_EUzZ_8LTaB3QUAHepJ13uXjvwn6AsihYRq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>755174483</pqid></control><display><type>article</type><title>Synthesis, Electronic Structure, and Reactivity of Strained Nickel-, Palladium-, and Platinum-Bridged [1]Ferrocenophanes</title><source>American Chemical Society Journals</source><creator>Matas, Inmaculada ; Whittell, George R ; Partridge, Benjamin M ; Holland, Jason P ; Haddow, Mairi F ; Green, Jennifer C ; Manners, Ian</creator><creatorcontrib>Matas, Inmaculada ; Whittell, George R ; Partridge, Benjamin M ; Holland, Jason P ; Haddow, Mairi F ; Green, Jennifer C ; Manners, Ian</creatorcontrib><description>The group 10 bis(phosphine)metalla[1]ferrocenophanes, [{Fe(η5-C5H4)2}M(Pn-Bu3)2] [M = Ni (4a), Pd (4b), and Pt (4c)], have been prepared by the reaction of Li2[Fe(η5-C5H4)2]·tmeda (5, tmeda = N,N,N′,N′-tetramethylethylenediamine) with trans-[MCl2(Pn-Bu3)2] [M = Ni (trans-6a) and Pd (trans-6b)] and cis-[PtCl2(Pn-Bu3)2] (cis-6c), respectively. Single crystal X-ray diffraction revealed highly tilted, strained structures as characterized by α angles of 28.4° (4a), 24.5° (4b), and 25.2° (4c) and a distorted square planar environment for the group 10 metal center. UV/visible spectroscopy and cyclic voltammetry indicated that all three compounds had smaller HOMO−LUMO gaps and were more electron-rich in nature than ferrocene and other comparable [1]ferrocenophanes. DFT calculations suggested that these differences were principally due to the electron-releasing nature of the M(Pn-Bu3)2 metal−ligand fragments. Attempts to induce thermal or anionic ring-opening polymerization of 4a−c were unsuccessful and were complicated by, for example, competing ligand dissociation processes or unfavorable chain propagation. In contrast, these species all reacted rapidly with acids effecting clean extrusion of the bis(phosphine)metal fragment. Carbon monoxide inserted cleanly into one of the palladium−carbon bonds of 4b to afford the ring-expanded, acylated product [{Fe(η5-C5H4)(η5-C5H4)(CO)}Pd(Pn-Bu3)2] (10). The nickel analogue 4a, however, afforded [Ni(CO)2(Pn-Bu3)2] whereas the platinum-bridged complex 4c was inert. Remarkably, all compounds 4a−c were readily oxidized by elemental sulfur to afford the [5,5′]bicyclopentadienylidene (pentafulvalene) complexes [{η4:η0-C5H4(C5H4)}M(Pn-Bu3)2] [M = Ni (11a)] and [(η2-C10H8)M(Pn-Bu3)2] [M = Pd (11b) and Pt (11c)] by a formal 4-electron oxidation of the carbocyclic ligands. Compounds 11b and 11c represent the first examples of [5,5′]bicyclopentadienylidene as a neutral η2-ligand. The relative energies of η2-coordination with respect to that of η4:η0 bonding were investigated for 11a−c by DFT calculations.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja103367e</identifier><identifier>PMID: 20812743</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2010-09, Vol.132 (38), p.13279-13289</ispartof><rights>Copyright © 2010 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a380t-4aa4d3ffe3317fae12eba507d9069538bb6c15a56d355008088c68743efd82de3</citedby><cites>FETCH-LOGICAL-a380t-4aa4d3ffe3317fae12eba507d9069538bb6c15a56d355008088c68743efd82de3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ja103367e$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ja103367e$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20812743$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Matas, Inmaculada</creatorcontrib><creatorcontrib>Whittell, George R</creatorcontrib><creatorcontrib>Partridge, Benjamin M</creatorcontrib><creatorcontrib>Holland, Jason P</creatorcontrib><creatorcontrib>Haddow, Mairi F</creatorcontrib><creatorcontrib>Green, Jennifer C</creatorcontrib><creatorcontrib>Manners, Ian</creatorcontrib><title>Synthesis, Electronic Structure, and Reactivity of Strained Nickel-, Palladium-, and Platinum-Bridged [1]Ferrocenophanes</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>The group 10 bis(phosphine)metalla[1]ferrocenophanes, [{Fe(η5-C5H4)2}M(Pn-Bu3)2] [M = Ni (4a), Pd (4b), and Pt (4c)], have been prepared by the reaction of Li2[Fe(η5-C5H4)2]·tmeda (5, tmeda = N,N,N′,N′-tetramethylethylenediamine) with trans-[MCl2(Pn-Bu3)2] [M = Ni (trans-6a) and Pd (trans-6b)] and cis-[PtCl2(Pn-Bu3)2] (cis-6c), respectively. Single crystal X-ray diffraction revealed highly tilted, strained structures as characterized by α angles of 28.4° (4a), 24.5° (4b), and 25.2° (4c) and a distorted square planar environment for the group 10 metal center. UV/visible spectroscopy and cyclic voltammetry indicated that all three compounds had smaller HOMO−LUMO gaps and were more electron-rich in nature than ferrocene and other comparable [1]ferrocenophanes. DFT calculations suggested that these differences were principally due to the electron-releasing nature of the M(Pn-Bu3)2 metal−ligand fragments. Attempts to induce thermal or anionic ring-opening polymerization of 4a−c were unsuccessful and were complicated by, for example, competing ligand dissociation processes or unfavorable chain propagation. In contrast, these species all reacted rapidly with acids effecting clean extrusion of the bis(phosphine)metal fragment. Carbon monoxide inserted cleanly into one of the palladium−carbon bonds of 4b to afford the ring-expanded, acylated product [{Fe(η5-C5H4)(η5-C5H4)(CO)}Pd(Pn-Bu3)2] (10). The nickel analogue 4a, however, afforded [Ni(CO)2(Pn-Bu3)2] whereas the platinum-bridged complex 4c was inert. Remarkably, all compounds 4a−c were readily oxidized by elemental sulfur to afford the [5,5′]bicyclopentadienylidene (pentafulvalene) complexes [{η4:η0-C5H4(C5H4)}M(Pn-Bu3)2] [M = Ni (11a)] and [(η2-C10H8)M(Pn-Bu3)2] [M = Pd (11b) and Pt (11c)] by a formal 4-electron oxidation of the carbocyclic ligands. Compounds 11b and 11c represent the first examples of [5,5′]bicyclopentadienylidene as a neutral η2-ligand. The relative energies of η2-coordination with respect to that of η4:η0 bonding were investigated for 11a−c by DFT calculations.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpt0MtKxDAUBuAgio6XhS8g3YgIU82laeNSB28gKl5WIuVMcqoZO-mYpOK8vZFRV67CIR8_5_yEbDN6wChnhxNgVIiywiUyYJLTXDJeLpMBpZTnlSrFGlkPYZLGgiu2StY4VYxXhRiQz_u5i68YbBhmpy3q6DtndXYffa9j73GYgTPZHYKO9sPGedY1359gHZrs2uo3bPNhdgttC8b203zhb1uI1qXxxFvzkuQTez5D7zuNrpu9gsOwSVYaaANu_bwb5PHs9GF0kV_dnF-Ojq9yEIrGvAAojGgaFIJVDSDjOAZJK3NEyyMp1HhcaiZBlkZISamiSulSpdOwMYobFBtkb5E78917jyHWUxs0pn0ddn2oKylZVRRKJLm_kNp3IXhs6pm3U_DzmtH6u-f6r-dkd35S-_EUzZ_8LTaB3QUAHepJ13uXjvwn6AsihYRq</recordid><startdate>20100929</startdate><enddate>20100929</enddate><creator>Matas, Inmaculada</creator><creator>Whittell, George R</creator><creator>Partridge, Benjamin M</creator><creator>Holland, Jason P</creator><creator>Haddow, Mairi F</creator><creator>Green, Jennifer C</creator><creator>Manners, Ian</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20100929</creationdate><title>Synthesis, Electronic Structure, and Reactivity of Strained Nickel-, Palladium-, and Platinum-Bridged [1]Ferrocenophanes</title><author>Matas, Inmaculada ; Whittell, George R ; Partridge, Benjamin M ; Holland, Jason P ; Haddow, Mairi F ; Green, Jennifer C ; Manners, Ian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a380t-4aa4d3ffe3317fae12eba507d9069538bb6c15a56d355008088c68743efd82de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matas, Inmaculada</creatorcontrib><creatorcontrib>Whittell, George R</creatorcontrib><creatorcontrib>Partridge, Benjamin M</creatorcontrib><creatorcontrib>Holland, Jason P</creatorcontrib><creatorcontrib>Haddow, Mairi F</creatorcontrib><creatorcontrib>Green, Jennifer C</creatorcontrib><creatorcontrib>Manners, Ian</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matas, Inmaculada</au><au>Whittell, George R</au><au>Partridge, Benjamin M</au><au>Holland, Jason P</au><au>Haddow, Mairi F</au><au>Green, Jennifer C</au><au>Manners, Ian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis, Electronic Structure, and Reactivity of Strained Nickel-, Palladium-, and Platinum-Bridged [1]Ferrocenophanes</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2010-09-29</date><risdate>2010</risdate><volume>132</volume><issue>38</issue><spage>13279</spage><epage>13289</epage><pages>13279-13289</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>The group 10 bis(phosphine)metalla[1]ferrocenophanes, [{Fe(η5-C5H4)2}M(Pn-Bu3)2] [M = Ni (4a), Pd (4b), and Pt (4c)], have been prepared by the reaction of Li2[Fe(η5-C5H4)2]·tmeda (5, tmeda = N,N,N′,N′-tetramethylethylenediamine) with trans-[MCl2(Pn-Bu3)2] [M = Ni (trans-6a) and Pd (trans-6b)] and cis-[PtCl2(Pn-Bu3)2] (cis-6c), respectively. Single crystal X-ray diffraction revealed highly tilted, strained structures as characterized by α angles of 28.4° (4a), 24.5° (4b), and 25.2° (4c) and a distorted square planar environment for the group 10 metal center. UV/visible spectroscopy and cyclic voltammetry indicated that all three compounds had smaller HOMO−LUMO gaps and were more electron-rich in nature than ferrocene and other comparable [1]ferrocenophanes. DFT calculations suggested that these differences were principally due to the electron-releasing nature of the M(Pn-Bu3)2 metal−ligand fragments. Attempts to induce thermal or anionic ring-opening polymerization of 4a−c were unsuccessful and were complicated by, for example, competing ligand dissociation processes or unfavorable chain propagation. In contrast, these species all reacted rapidly with acids effecting clean extrusion of the bis(phosphine)metal fragment. Carbon monoxide inserted cleanly into one of the palladium−carbon bonds of 4b to afford the ring-expanded, acylated product [{Fe(η5-C5H4)(η5-C5H4)(CO)}Pd(Pn-Bu3)2] (10). The nickel analogue 4a, however, afforded [Ni(CO)2(Pn-Bu3)2] whereas the platinum-bridged complex 4c was inert. Remarkably, all compounds 4a−c were readily oxidized by elemental sulfur to afford the [5,5′]bicyclopentadienylidene (pentafulvalene) complexes [{η4:η0-C5H4(C5H4)}M(Pn-Bu3)2] [M = Ni (11a)] and [(η2-C10H8)M(Pn-Bu3)2] [M = Pd (11b) and Pt (11c)] by a formal 4-electron oxidation of the carbocyclic ligands. Compounds 11b and 11c represent the first examples of [5,5′]bicyclopentadienylidene as a neutral η2-ligand. The relative energies of η2-coordination with respect to that of η4:η0 bonding were investigated for 11a−c by DFT calculations.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>20812743</pmid><doi>10.1021/ja103367e</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2010-09, Vol.132 (38), p.13279-13289
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_755174483
source American Chemical Society Journals
title Synthesis, Electronic Structure, and Reactivity of Strained Nickel-, Palladium-, and Platinum-Bridged [1]Ferrocenophanes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T01%3A12%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis,%20Electronic%20Structure,%20and%20Reactivity%20of%20Strained%20Nickel-,%20Palladium-,%20and%20Platinum-Bridged%20%5B1%5DFerrocenophanes&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Matas,%20Inmaculada&rft.date=2010-09-29&rft.volume=132&rft.issue=38&rft.spage=13279&rft.epage=13289&rft.pages=13279-13289&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja103367e&rft_dat=%3Cproquest_cross%3E755174483%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=755174483&rft_id=info:pmid/20812743&rfr_iscdi=true