Caspase-dependent protein phosphatase 2A activation contributes to endotoxin-induced cardiomyocyte contractile dysfunction
OBJECTIVE:Several studies report calcium mishandling, sarcomere disarray, and caspase activation during heart failure. Although active caspases have been shown to cleave myofibrillar proteins, little is known regarding their effects on calcium handling proteins. Therefore, we aimed to explore how en...
Gespeichert in:
Veröffentlicht in: | Critical care medicine 2010-10, Vol.38 (10), p.2031-2036 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2036 |
---|---|
container_issue | 10 |
container_start_page | 2031 |
container_title | Critical care medicine |
container_volume | 38 |
creator | Neviere, Remi Hassoun, Sidi Mohamed Decoster, Brigitte Bouazza, Youcef Montaigne, David Maréchal, Xavier Marciniak, Camille Marchetti, Philippe Lancel, Steve |
description | OBJECTIVE:Several studies report calcium mishandling, sarcomere disarray, and caspase activation during heart failure. Although active caspases have been shown to cleave myofibrillar proteins, little is known regarding their effects on calcium handling proteins. Therefore, we aimed to explore how endotoxin-induced caspase activation disrupts intracellular calcium regulation.
DESIGN:Randomized controlled trial.
SETTING:Small animal research laboratory.
SUBJECTS:Adult male Sprague-Dawley rats.
INTERVENTIONS:Sepsis was induced by injection of endotoxin (10 mg/kg, intravenously). Caspase inhibition was achieved by coinjection with zVAD.fmk (3 mg/kg, intravenously). We first isolated adult rat ventricular myocytes from control, endotoxin, and (endotoxin + zVAD)-treated rats to characterize contractile parameters and cellular calcium homeostasis. Underlying molecular mechanisms responsible for calcium mishandling were explored on sarcoplasmic reticulum vesicles and mitochondria prepared from treated animals. All experiments were performed 4 hrs postendotoxin treatment.
MEASUREMENTS AND MAIN RESULTS:zVAD normalized reductions in fractional cell shortening and relaxation rate triggered by endotoxin treatment. Both sarco-/endoplasmic reticulum Ca-ATPase and mitochondria-dependent calcium uptakes were impaired after endotoxin treatment and prevented when myocytes were isolated from zVAD-treated endotoxinic rat hearts. zVAD blocked endotoxin-induced phospholamban dephosphorylation, protein phosphatase 2A activation, and mitochondrial calcium retention capacity reduction. To strengthen these results, control sarcoplasmic reticulum vesicles and mitochondria were incubated with active recombinant caspase-3. Although no effects were observed on mitochondria, caspase-3 directly exerts detrimental effects on sarcoplasmic reticulum calcium uptake capacity by activating protein phosphatase 2A, leading to phospholamban dephosphorylation.
CONCLUSIONS:Caspase inhibition protects from endotoxin-induced sarcoplasmic reticulum calcium uptake capacity reduction and mitochondrial dysfunction. |
doi_str_mv | 10.1097/CCM.0b013e3181eedafb |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_755165041</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>755165041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385b-760854e601fe5febfda1797c4071a33864d53488cd59a0b5f699725f8dd80fcc3</originalsourceid><addsrcrecordid>eNp9kE1v1DAQhi1ERbeFf4BQLohT2nFsx86xigpUKuJSzpFjj7WGrB1sh7L8-ma1C0gcOM1hnmc-XkJeU7ii0Mnrvv90BSNQhowqimi1G5-RDRUMamg69pxsADqoGe_YObnI-SsA5UKyF-S8gVbIRsKG_Op1nnXG2uKMwWIo1ZxiQR-qeRvzvNVl7VbNTaVN8T908TFUJoaS_LgUzFWJ1erFEn_6UPtgF4O2MjpZH3f7aPYFj_hBn7Cy--yWYA5jXpIzp6eMr071knx5f_vQf6zvP3-462_ua8OUGGvZghIcW6AOhcPRWU1lJw0HSTVjquVWMK6UsaLTMArXdp1shFPWKnDGsEvy7jh3fez7grkMO58NTpMOGJc8SCFoK4DTleRH0qSYc0I3zMnvdNoPFIZD6MMa-vBv6Kv25rRgGXdo_0i_U16BtydAZ6Mnl3QwPv_lWNMKDmzl1JF7jFPBlL9NyyOmYYt6Ktv_3_AEYhWisg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>755165041</pqid></control><display><type>article</type><title>Caspase-dependent protein phosphatase 2A activation contributes to endotoxin-induced cardiomyocyte contractile dysfunction</title><source>MEDLINE</source><source>Journals@Ovid Complete</source><creator>Neviere, Remi ; Hassoun, Sidi Mohamed ; Decoster, Brigitte ; Bouazza, Youcef ; Montaigne, David ; Maréchal, Xavier ; Marciniak, Camille ; Marchetti, Philippe ; Lancel, Steve</creator><creatorcontrib>Neviere, Remi ; Hassoun, Sidi Mohamed ; Decoster, Brigitte ; Bouazza, Youcef ; Montaigne, David ; Maréchal, Xavier ; Marciniak, Camille ; Marchetti, Philippe ; Lancel, Steve</creatorcontrib><description>OBJECTIVE:Several studies report calcium mishandling, sarcomere disarray, and caspase activation during heart failure. Although active caspases have been shown to cleave myofibrillar proteins, little is known regarding their effects on calcium handling proteins. Therefore, we aimed to explore how endotoxin-induced caspase activation disrupts intracellular calcium regulation.
DESIGN:Randomized controlled trial.
SETTING:Small animal research laboratory.
SUBJECTS:Adult male Sprague-Dawley rats.
INTERVENTIONS:Sepsis was induced by injection of endotoxin (10 mg/kg, intravenously). Caspase inhibition was achieved by coinjection with zVAD.fmk (3 mg/kg, intravenously). We first isolated adult rat ventricular myocytes from control, endotoxin, and (endotoxin + zVAD)-treated rats to characterize contractile parameters and cellular calcium homeostasis. Underlying molecular mechanisms responsible for calcium mishandling were explored on sarcoplasmic reticulum vesicles and mitochondria prepared from treated animals. All experiments were performed 4 hrs postendotoxin treatment.
MEASUREMENTS AND MAIN RESULTS:zVAD normalized reductions in fractional cell shortening and relaxation rate triggered by endotoxin treatment. Both sarco-/endoplasmic reticulum Ca-ATPase and mitochondria-dependent calcium uptakes were impaired after endotoxin treatment and prevented when myocytes were isolated from zVAD-treated endotoxinic rat hearts. zVAD blocked endotoxin-induced phospholamban dephosphorylation, protein phosphatase 2A activation, and mitochondrial calcium retention capacity reduction. To strengthen these results, control sarcoplasmic reticulum vesicles and mitochondria were incubated with active recombinant caspase-3. Although no effects were observed on mitochondria, caspase-3 directly exerts detrimental effects on sarcoplasmic reticulum calcium uptake capacity by activating protein phosphatase 2A, leading to phospholamban dephosphorylation.
CONCLUSIONS:Caspase inhibition protects from endotoxin-induced sarcoplasmic reticulum calcium uptake capacity reduction and mitochondrial dysfunction.</description><identifier>ISSN: 0090-3493</identifier><identifier>EISSN: 1530-0293</identifier><identifier>DOI: 10.1097/CCM.0b013e3181eedafb</identifier><identifier>PMID: 20657270</identifier><identifier>CODEN: CCMDC7</identifier><language>eng</language><publisher>Hagerstown, MD: by the Society of Critical Care Medicine and Lippincott Williams & Wilkins</publisher><subject>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy ; Animals ; Biological and medical sciences ; Blood coagulation. Blood cells ; Blotting, Western ; Calcium - analysis ; Calcium - metabolism ; Calcium - physiology ; Caspases - metabolism ; Caspases - physiology ; Endotoxins - pharmacology ; Enzyme Activation - physiology ; Fundamental and applied biological sciences. Psychology ; Heart Failure - enzymology ; Heart Failure - physiopathology ; Intensive care medicine ; Male ; Medical sciences ; Membrane Potential, Mitochondrial - drug effects ; Membrane Potential, Mitochondrial - physiology ; Mitochondria, Heart - chemistry ; Mitochondria, Heart - drug effects ; Mitochondria, Heart - physiology ; Molecular and cellular biology ; Myocardial Contraction - drug effects ; Myocardial Contraction - physiology ; Myocytes, Cardiac - chemistry ; Myocytes, Cardiac - drug effects ; Myocytes, Cardiac - enzymology ; Myocytes, Cardiac - physiology ; Platelet ; Protein Phosphatase 2 - metabolism ; Protein Phosphatase 2 - physiology ; Rats ; Rats, Sprague-Dawley</subject><ispartof>Critical care medicine, 2010-10, Vol.38 (10), p.2031-2036</ispartof><rights>2010 by the Society of Critical Care Medicine and Lippincott Williams & Wilkins</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385b-760854e601fe5febfda1797c4071a33864d53488cd59a0b5f699725f8dd80fcc3</citedby><cites>FETCH-LOGICAL-c385b-760854e601fe5febfda1797c4071a33864d53488cd59a0b5f699725f8dd80fcc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23265403$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20657270$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Neviere, Remi</creatorcontrib><creatorcontrib>Hassoun, Sidi Mohamed</creatorcontrib><creatorcontrib>Decoster, Brigitte</creatorcontrib><creatorcontrib>Bouazza, Youcef</creatorcontrib><creatorcontrib>Montaigne, David</creatorcontrib><creatorcontrib>Maréchal, Xavier</creatorcontrib><creatorcontrib>Marciniak, Camille</creatorcontrib><creatorcontrib>Marchetti, Philippe</creatorcontrib><creatorcontrib>Lancel, Steve</creatorcontrib><title>Caspase-dependent protein phosphatase 2A activation contributes to endotoxin-induced cardiomyocyte contractile dysfunction</title><title>Critical care medicine</title><addtitle>Crit Care Med</addtitle><description>OBJECTIVE:Several studies report calcium mishandling, sarcomere disarray, and caspase activation during heart failure. Although active caspases have been shown to cleave myofibrillar proteins, little is known regarding their effects on calcium handling proteins. Therefore, we aimed to explore how endotoxin-induced caspase activation disrupts intracellular calcium regulation.
DESIGN:Randomized controlled trial.
SETTING:Small animal research laboratory.
SUBJECTS:Adult male Sprague-Dawley rats.
INTERVENTIONS:Sepsis was induced by injection of endotoxin (10 mg/kg, intravenously). Caspase inhibition was achieved by coinjection with zVAD.fmk (3 mg/kg, intravenously). We first isolated adult rat ventricular myocytes from control, endotoxin, and (endotoxin + zVAD)-treated rats to characterize contractile parameters and cellular calcium homeostasis. Underlying molecular mechanisms responsible for calcium mishandling were explored on sarcoplasmic reticulum vesicles and mitochondria prepared from treated animals. All experiments were performed 4 hrs postendotoxin treatment.
MEASUREMENTS AND MAIN RESULTS:zVAD normalized reductions in fractional cell shortening and relaxation rate triggered by endotoxin treatment. Both sarco-/endoplasmic reticulum Ca-ATPase and mitochondria-dependent calcium uptakes were impaired after endotoxin treatment and prevented when myocytes were isolated from zVAD-treated endotoxinic rat hearts. zVAD blocked endotoxin-induced phospholamban dephosphorylation, protein phosphatase 2A activation, and mitochondrial calcium retention capacity reduction. To strengthen these results, control sarcoplasmic reticulum vesicles and mitochondria were incubated with active recombinant caspase-3. Although no effects were observed on mitochondria, caspase-3 directly exerts detrimental effects on sarcoplasmic reticulum calcium uptake capacity by activating protein phosphatase 2A, leading to phospholamban dephosphorylation.
CONCLUSIONS:Caspase inhibition protects from endotoxin-induced sarcoplasmic reticulum calcium uptake capacity reduction and mitochondrial dysfunction.</description><subject>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Blood coagulation. Blood cells</subject><subject>Blotting, Western</subject><subject>Calcium - analysis</subject><subject>Calcium - metabolism</subject><subject>Calcium - physiology</subject><subject>Caspases - metabolism</subject><subject>Caspases - physiology</subject><subject>Endotoxins - pharmacology</subject><subject>Enzyme Activation - physiology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Heart Failure - enzymology</subject><subject>Heart Failure - physiopathology</subject><subject>Intensive care medicine</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Membrane Potential, Mitochondrial - drug effects</subject><subject>Membrane Potential, Mitochondrial - physiology</subject><subject>Mitochondria, Heart - chemistry</subject><subject>Mitochondria, Heart - drug effects</subject><subject>Mitochondria, Heart - physiology</subject><subject>Molecular and cellular biology</subject><subject>Myocardial Contraction - drug effects</subject><subject>Myocardial Contraction - physiology</subject><subject>Myocytes, Cardiac - chemistry</subject><subject>Myocytes, Cardiac - drug effects</subject><subject>Myocytes, Cardiac - enzymology</subject><subject>Myocytes, Cardiac - physiology</subject><subject>Platelet</subject><subject>Protein Phosphatase 2 - metabolism</subject><subject>Protein Phosphatase 2 - physiology</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><issn>0090-3493</issn><issn>1530-0293</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1v1DAQhi1ERbeFf4BQLohT2nFsx86xigpUKuJSzpFjj7WGrB1sh7L8-ma1C0gcOM1hnmc-XkJeU7ii0Mnrvv90BSNQhowqimi1G5-RDRUMamg69pxsADqoGe_YObnI-SsA5UKyF-S8gVbIRsKG_Op1nnXG2uKMwWIo1ZxiQR-qeRvzvNVl7VbNTaVN8T908TFUJoaS_LgUzFWJ1erFEn_6UPtgF4O2MjpZH3f7aPYFj_hBn7Cy--yWYA5jXpIzp6eMr071knx5f_vQf6zvP3-462_ua8OUGGvZghIcW6AOhcPRWU1lJw0HSTVjquVWMK6UsaLTMArXdp1shFPWKnDGsEvy7jh3fez7grkMO58NTpMOGJc8SCFoK4DTleRH0qSYc0I3zMnvdNoPFIZD6MMa-vBv6Kv25rRgGXdo_0i_U16BtydAZ6Mnl3QwPv_lWNMKDmzl1JF7jFPBlL9NyyOmYYt6Ktv_3_AEYhWisg</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Neviere, Remi</creator><creator>Hassoun, Sidi Mohamed</creator><creator>Decoster, Brigitte</creator><creator>Bouazza, Youcef</creator><creator>Montaigne, David</creator><creator>Maréchal, Xavier</creator><creator>Marciniak, Camille</creator><creator>Marchetti, Philippe</creator><creator>Lancel, Steve</creator><general>by the Society of Critical Care Medicine and Lippincott Williams & Wilkins</general><general>Lippincott Williams & Wilkins</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201010</creationdate><title>Caspase-dependent protein phosphatase 2A activation contributes to endotoxin-induced cardiomyocyte contractile dysfunction</title><author>Neviere, Remi ; Hassoun, Sidi Mohamed ; Decoster, Brigitte ; Bouazza, Youcef ; Montaigne, David ; Maréchal, Xavier ; Marciniak, Camille ; Marchetti, Philippe ; Lancel, Steve</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385b-760854e601fe5febfda1797c4071a33864d53488cd59a0b5f699725f8dd80fcc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Blood coagulation. Blood cells</topic><topic>Blotting, Western</topic><topic>Calcium - analysis</topic><topic>Calcium - metabolism</topic><topic>Calcium - physiology</topic><topic>Caspases - metabolism</topic><topic>Caspases - physiology</topic><topic>Endotoxins - pharmacology</topic><topic>Enzyme Activation - physiology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Heart Failure - enzymology</topic><topic>Heart Failure - physiopathology</topic><topic>Intensive care medicine</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Membrane Potential, Mitochondrial - drug effects</topic><topic>Membrane Potential, Mitochondrial - physiology</topic><topic>Mitochondria, Heart - chemistry</topic><topic>Mitochondria, Heart - drug effects</topic><topic>Mitochondria, Heart - physiology</topic><topic>Molecular and cellular biology</topic><topic>Myocardial Contraction - drug effects</topic><topic>Myocardial Contraction - physiology</topic><topic>Myocytes, Cardiac - chemistry</topic><topic>Myocytes, Cardiac - drug effects</topic><topic>Myocytes, Cardiac - enzymology</topic><topic>Myocytes, Cardiac - physiology</topic><topic>Platelet</topic><topic>Protein Phosphatase 2 - metabolism</topic><topic>Protein Phosphatase 2 - physiology</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Neviere, Remi</creatorcontrib><creatorcontrib>Hassoun, Sidi Mohamed</creatorcontrib><creatorcontrib>Decoster, Brigitte</creatorcontrib><creatorcontrib>Bouazza, Youcef</creatorcontrib><creatorcontrib>Montaigne, David</creatorcontrib><creatorcontrib>Maréchal, Xavier</creatorcontrib><creatorcontrib>Marciniak, Camille</creatorcontrib><creatorcontrib>Marchetti, Philippe</creatorcontrib><creatorcontrib>Lancel, Steve</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Critical care medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neviere, Remi</au><au>Hassoun, Sidi Mohamed</au><au>Decoster, Brigitte</au><au>Bouazza, Youcef</au><au>Montaigne, David</au><au>Maréchal, Xavier</au><au>Marciniak, Camille</au><au>Marchetti, Philippe</au><au>Lancel, Steve</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Caspase-dependent protein phosphatase 2A activation contributes to endotoxin-induced cardiomyocyte contractile dysfunction</atitle><jtitle>Critical care medicine</jtitle><addtitle>Crit Care Med</addtitle><date>2010-10</date><risdate>2010</risdate><volume>38</volume><issue>10</issue><spage>2031</spage><epage>2036</epage><pages>2031-2036</pages><issn>0090-3493</issn><eissn>1530-0293</eissn><coden>CCMDC7</coden><abstract>OBJECTIVE:Several studies report calcium mishandling, sarcomere disarray, and caspase activation during heart failure. Although active caspases have been shown to cleave myofibrillar proteins, little is known regarding their effects on calcium handling proteins. Therefore, we aimed to explore how endotoxin-induced caspase activation disrupts intracellular calcium regulation.
DESIGN:Randomized controlled trial.
SETTING:Small animal research laboratory.
SUBJECTS:Adult male Sprague-Dawley rats.
INTERVENTIONS:Sepsis was induced by injection of endotoxin (10 mg/kg, intravenously). Caspase inhibition was achieved by coinjection with zVAD.fmk (3 mg/kg, intravenously). We first isolated adult rat ventricular myocytes from control, endotoxin, and (endotoxin + zVAD)-treated rats to characterize contractile parameters and cellular calcium homeostasis. Underlying molecular mechanisms responsible for calcium mishandling were explored on sarcoplasmic reticulum vesicles and mitochondria prepared from treated animals. All experiments were performed 4 hrs postendotoxin treatment.
MEASUREMENTS AND MAIN RESULTS:zVAD normalized reductions in fractional cell shortening and relaxation rate triggered by endotoxin treatment. Both sarco-/endoplasmic reticulum Ca-ATPase and mitochondria-dependent calcium uptakes were impaired after endotoxin treatment and prevented when myocytes were isolated from zVAD-treated endotoxinic rat hearts. zVAD blocked endotoxin-induced phospholamban dephosphorylation, protein phosphatase 2A activation, and mitochondrial calcium retention capacity reduction. To strengthen these results, control sarcoplasmic reticulum vesicles and mitochondria were incubated with active recombinant caspase-3. Although no effects were observed on mitochondria, caspase-3 directly exerts detrimental effects on sarcoplasmic reticulum calcium uptake capacity by activating protein phosphatase 2A, leading to phospholamban dephosphorylation.
CONCLUSIONS:Caspase inhibition protects from endotoxin-induced sarcoplasmic reticulum calcium uptake capacity reduction and mitochondrial dysfunction.</abstract><cop>Hagerstown, MD</cop><pub>by the Society of Critical Care Medicine and Lippincott Williams & Wilkins</pub><pmid>20657270</pmid><doi>10.1097/CCM.0b013e3181eedafb</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0090-3493 |
ispartof | Critical care medicine, 2010-10, Vol.38 (10), p.2031-2036 |
issn | 0090-3493 1530-0293 |
language | eng |
recordid | cdi_proquest_miscellaneous_755165041 |
source | MEDLINE; Journals@Ovid Complete |
subjects | Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy Animals Biological and medical sciences Blood coagulation. Blood cells Blotting, Western Calcium - analysis Calcium - metabolism Calcium - physiology Caspases - metabolism Caspases - physiology Endotoxins - pharmacology Enzyme Activation - physiology Fundamental and applied biological sciences. Psychology Heart Failure - enzymology Heart Failure - physiopathology Intensive care medicine Male Medical sciences Membrane Potential, Mitochondrial - drug effects Membrane Potential, Mitochondrial - physiology Mitochondria, Heart - chemistry Mitochondria, Heart - drug effects Mitochondria, Heart - physiology Molecular and cellular biology Myocardial Contraction - drug effects Myocardial Contraction - physiology Myocytes, Cardiac - chemistry Myocytes, Cardiac - drug effects Myocytes, Cardiac - enzymology Myocytes, Cardiac - physiology Platelet Protein Phosphatase 2 - metabolism Protein Phosphatase 2 - physiology Rats Rats, Sprague-Dawley |
title | Caspase-dependent protein phosphatase 2A activation contributes to endotoxin-induced cardiomyocyte contractile dysfunction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T23%3A12%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Caspase-dependent%20protein%20phosphatase%202A%20activation%20contributes%20to%20endotoxin-induced%20cardiomyocyte%20contractile%20dysfunction&rft.jtitle=Critical%20care%20medicine&rft.au=Neviere,%20Remi&rft.date=2010-10&rft.volume=38&rft.issue=10&rft.spage=2031&rft.epage=2036&rft.pages=2031-2036&rft.issn=0090-3493&rft.eissn=1530-0293&rft.coden=CCMDC7&rft_id=info:doi/10.1097/CCM.0b013e3181eedafb&rft_dat=%3Cproquest_cross%3E755165041%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=755165041&rft_id=info:pmid/20657270&rfr_iscdi=true |