Options and efficiency in spaces of bounded claims

In a seminal contribution, Ross (1976) showed that a static finite state-space market can be completed by supplementing the primitive securities with ordinary call and put options. Galvani (2009) extends this result to norm separable L p -spaces, with 1 ≤ p < ∞ . This study concludes that options...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical economics 2010-07, Vol.46 (4), p.616-619
Hauptverfasser: Galvani, Valentina, Troitsky, Vladimir G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 619
container_issue 4
container_start_page 616
container_title Journal of mathematical economics
container_volume 46
creator Galvani, Valentina
Troitsky, Vladimir G.
description In a seminal contribution, Ross (1976) showed that a static finite state-space market can be completed by supplementing the primitive securities with ordinary call and put options. Galvani (2009) extends this result to norm separable L p -spaces, with 1 ≤ p < ∞ . This study concludes that options maintain the same spanning power in the space of bounded payoffs topologized by the duality with the space of the state price densities. In particular, under mild assumptions on the probability space, options written on a claim that is a.s. equal to an injective function complete the market.
doi_str_mv 10.1016/j.jmateco.2010.05.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_755156984</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304406810000480</els_id><sourcerecordid>755156984</sourcerecordid><originalsourceid>FETCH-LOGICAL-c545t-af1248b87bb375af5b7d090aa02213763682f3a23630e0798534ba51c58cc3d23</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMoOD5-glDcuOp40zxnJSI-EdzoOqTpLaZMm5p0hPn3Zh64cOPi3AuXcw6Xj5ALCnMKVF538663E7owryDfQMwB-AGZUa1YSQXTh2QGDHjJQepjcpJSBwBKgZ6R6m2cfBhSYYemwLb1zuPg1oUfijRah6kIbVGH1dBgU7il9X06I0etXSY83-9T8vFw_373VL6-PT7f3b6WTnAxlbalFde1VnXNlLCtqFUDC7AWqooyJZnUVctsxSQDBLXQgvHaCuqEdo41FTslV7veMYavFabJ9D45XC7tgGGVjBKCCrnQPDsv_zi7sIpDfs4ozrnkWkI2iZ3JxZBSxNaM0fc2rg0Fs-FoOrPnaDYcDQiTOebcyy4XcUT3G0LEvfnbMMtlHuusbZJZv7lljVkyV0u6MJ9Tn8tudmWYwX17jCZtgWPjI7rJNMH_884Ps7iU1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>744464860</pqid></control><display><type>article</type><title>Options and efficiency in spaces of bounded claims</title><source>RePEc</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Galvani, Valentina ; Troitsky, Vladimir G.</creator><creatorcontrib>Galvani, Valentina ; Troitsky, Vladimir G.</creatorcontrib><description>In a seminal contribution, Ross (1976) showed that a static finite state-space market can be completed by supplementing the primitive securities with ordinary call and put options. Galvani (2009) extends this result to norm separable L p -spaces, with 1 ≤ p &lt; ∞ . This study concludes that options maintain the same spanning power in the space of bounded payoffs topologized by the duality with the space of the state price densities. In particular, under mild assumptions on the probability space, options written on a claim that is a.s. equal to an injective function complete the market.</description><identifier>ISSN: 0304-4068</identifier><identifier>EISSN: 1873-1538</identifier><identifier>DOI: 10.1016/j.jmateco.2010.05.004</identifier><identifier>CODEN: JMECDA</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Economic theory ; Efficiency ; Market completeness ; Market theory ; Mathematical economics ; Options ; Payoffs ; Put &amp; call options ; Spanning ; Spanning Options Market completeness Efficiency ; Spatial models ; Studies</subject><ispartof>Journal of mathematical economics, 2010-07, Vol.46 (4), p.616-619</ispartof><rights>2010 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Jul 20, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c545t-af1248b87bb375af5b7d090aa02213763682f3a23630e0798534ba51c58cc3d23</citedby><cites>FETCH-LOGICAL-c545t-af1248b87bb375af5b7d090aa02213763682f3a23630e0798534ba51c58cc3d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmateco.2010.05.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,3996,27911,27912,45982</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeemateco/v_3a46_3ay_3a2010_3ai_3a4_3ap_3a616-619.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Galvani, Valentina</creatorcontrib><creatorcontrib>Troitsky, Vladimir G.</creatorcontrib><title>Options and efficiency in spaces of bounded claims</title><title>Journal of mathematical economics</title><description>In a seminal contribution, Ross (1976) showed that a static finite state-space market can be completed by supplementing the primitive securities with ordinary call and put options. Galvani (2009) extends this result to norm separable L p -spaces, with 1 ≤ p &lt; ∞ . This study concludes that options maintain the same spanning power in the space of bounded payoffs topologized by the duality with the space of the state price densities. In particular, under mild assumptions on the probability space, options written on a claim that is a.s. equal to an injective function complete the market.</description><subject>Economic theory</subject><subject>Efficiency</subject><subject>Market completeness</subject><subject>Market theory</subject><subject>Mathematical economics</subject><subject>Options</subject><subject>Payoffs</subject><subject>Put &amp; call options</subject><subject>Spanning</subject><subject>Spanning Options Market completeness Efficiency</subject><subject>Spatial models</subject><subject>Studies</subject><issn>0304-4068</issn><issn>1873-1538</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFkEtLxDAUhYMoOD5-glDcuOp40zxnJSI-EdzoOqTpLaZMm5p0hPn3Zh64cOPi3AuXcw6Xj5ALCnMKVF538663E7owryDfQMwB-AGZUa1YSQXTh2QGDHjJQepjcpJSBwBKgZ6R6m2cfBhSYYemwLb1zuPg1oUfijRah6kIbVGH1dBgU7il9X06I0etXSY83-9T8vFw_373VL6-PT7f3b6WTnAxlbalFde1VnXNlLCtqFUDC7AWqooyJZnUVctsxSQDBLXQgvHaCuqEdo41FTslV7veMYavFabJ9D45XC7tgGGVjBKCCrnQPDsv_zi7sIpDfs4ozrnkWkI2iZ3JxZBSxNaM0fc2rg0Fs-FoOrPnaDYcDQiTOebcyy4XcUT3G0LEvfnbMMtlHuusbZJZv7lljVkyV0u6MJ9Tn8tudmWYwX17jCZtgWPjI7rJNMH_884Ps7iU1Q</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Galvani, Valentina</creator><creator>Troitsky, Vladimir G.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope></search><sort><creationdate>201007</creationdate><title>Options and efficiency in spaces of bounded claims</title><author>Galvani, Valentina ; Troitsky, Vladimir G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c545t-af1248b87bb375af5b7d090aa02213763682f3a23630e0798534ba51c58cc3d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Economic theory</topic><topic>Efficiency</topic><topic>Market completeness</topic><topic>Market theory</topic><topic>Mathematical economics</topic><topic>Options</topic><topic>Payoffs</topic><topic>Put &amp; call options</topic><topic>Spanning</topic><topic>Spanning Options Market completeness Efficiency</topic><topic>Spatial models</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galvani, Valentina</creatorcontrib><creatorcontrib>Troitsky, Vladimir G.</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of mathematical economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galvani, Valentina</au><au>Troitsky, Vladimir G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Options and efficiency in spaces of bounded claims</atitle><jtitle>Journal of mathematical economics</jtitle><date>2010-07</date><risdate>2010</risdate><volume>46</volume><issue>4</issue><spage>616</spage><epage>619</epage><pages>616-619</pages><issn>0304-4068</issn><eissn>1873-1538</eissn><coden>JMECDA</coden><abstract>In a seminal contribution, Ross (1976) showed that a static finite state-space market can be completed by supplementing the primitive securities with ordinary call and put options. Galvani (2009) extends this result to norm separable L p -spaces, with 1 ≤ p &lt; ∞ . This study concludes that options maintain the same spanning power in the space of bounded payoffs topologized by the duality with the space of the state price densities. In particular, under mild assumptions on the probability space, options written on a claim that is a.s. equal to an injective function complete the market.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jmateco.2010.05.004</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-4068
ispartof Journal of mathematical economics, 2010-07, Vol.46 (4), p.616-619
issn 0304-4068
1873-1538
language eng
recordid cdi_proquest_miscellaneous_755156984
source RePEc; ScienceDirect Journals (5 years ago - present)
subjects Economic theory
Efficiency
Market completeness
Market theory
Mathematical economics
Options
Payoffs
Put & call options
Spanning
Spanning Options Market completeness Efficiency
Spatial models
Studies
title Options and efficiency in spaces of bounded claims
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T14%3A02%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Options%20and%20efficiency%20in%20spaces%20of%20bounded%20claims&rft.jtitle=Journal%20of%20mathematical%20economics&rft.au=Galvani,%20Valentina&rft.date=2010-07&rft.volume=46&rft.issue=4&rft.spage=616&rft.epage=619&rft.pages=616-619&rft.issn=0304-4068&rft.eissn=1873-1538&rft.coden=JMECDA&rft_id=info:doi/10.1016/j.jmateco.2010.05.004&rft_dat=%3Cproquest_cross%3E755156984%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=744464860&rft_id=info:pmid/&rft_els_id=S0304406810000480&rfr_iscdi=true