Semiparametric inference in multivariate fractionally cointegrated systems

A semiparametric multivariate fractionally cointegrated system is considered, integration orders possibly being unknown and I ( 0 ) unobservable inputs having nonparametric spectral density. Two estimates of the vector of cointegrating parameters ν are considered. One involves inverse spectral weigh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of econometrics 2010-08, Vol.157 (2), p.492-511
Hauptverfasser: Hualde, J., Robinson, P.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 511
container_issue 2
container_start_page 492
container_title Journal of econometrics
container_volume 157
creator Hualde, J.
Robinson, P.M.
description A semiparametric multivariate fractionally cointegrated system is considered, integration orders possibly being unknown and I ( 0 ) unobservable inputs having nonparametric spectral density. Two estimates of the vector of cointegrating parameters ν are considered. One involves inverse spectral weighting and the other is unweighted but uses a spectral estimate at frequency zero. Both corresponding Wald statistics for testing linear restrictions on ν are shown to have a standard null χ 2 limit distribution under quite general conditions. Notably, this outcome is irrespective of whether cointegrating relations are “strong” (when the difference between integration orders of observables and cointegrating errors exceeds 1/2), or “weak” (when that difference is less than 1/2), or when both cases are involved. Finite-sample properties are examined in a Monte Carlo study and an empirical example is presented.
doi_str_mv 10.1016/j.jeconom.2010.04.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_755155590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304407610001089</els_id><sourcerecordid>2069643121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c576t-46215318b89ebd0af29c370d3632066674661f6ea0f41465b83825983a81198c3</originalsourceid><addsrcrecordid>eNqFkU1r3DAQhkVpodu0P6FgAqEnb0aflk-hhH4mkEPas9DK41bGthxJu7D_vtp6yaGXCkYzSM87jF4R8p7ClgJV18N2QBfmMG0ZlDMQWwD2gmyoblitdCtfkg1wELWARr0mb1IaAEAKzTfk-yNOfrHRTpijd5Wfe4w4OyxVNe3H7A82epux6qN12YfZjuOxcsHPGX_FctFV6ZgyTuktedXbMeG7c74gPz9_-nH7tb5_-PLt9uN97WSjci0Uo5JTvdMt7jqwPWsdb6DjijNQSjVCKdortNALKpTcaa6ZbDW3mtJWO35BPqx9lxie9piymXxyOI52xrBPppGSSilbKOTlP-QQ9rG8IBnJNLCGC1EguUIuhpQi9maJfrLxaCiYk79mMGd_zclfA8IUf4vubtVFXNA9i7CsFT4Ybqlsyn4s8VfKrT-VJZYSomVGUmp-56l0uzqPapOzYzF7dj49d2UcqGScF-5m5bA4fPAYTXL-9F-dj-iy6YL_z9x_AMQrq5k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>528027344</pqid></control><display><type>article</type><title>Semiparametric inference in multivariate fractionally cointegrated systems</title><source>RePEc</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Hualde, J. ; Robinson, P.M.</creator><creatorcontrib>Hualde, J. ; Robinson, P.M.</creatorcontrib><description>A semiparametric multivariate fractionally cointegrated system is considered, integration orders possibly being unknown and I ( 0 ) unobservable inputs having nonparametric spectral density. Two estimates of the vector of cointegrating parameters ν are considered. One involves inverse spectral weighting and the other is unweighted but uses a spectral estimate at frequency zero. Both corresponding Wald statistics for testing linear restrictions on ν are shown to have a standard null χ 2 limit distribution under quite general conditions. Notably, this outcome is irrespective of whether cointegrating relations are “strong” (when the difference between integration orders of observables and cointegrating errors exceeds 1/2), or “weak” (when that difference is less than 1/2), or when both cases are involved. Finite-sample properties are examined in a Monte Carlo study and an empirical example is presented.</description><identifier>ISSN: 0304-4076</identifier><identifier>EISSN: 1872-6895</identifier><identifier>DOI: 10.1016/j.jeconom.2010.04.002</identifier><identifier>CODEN: JECMB6</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applications ; Cointegration ; Cointegration analysis ; Distribution theory ; Econometrics ; Estimating techniques ; Estimation ; Exact sciences and technology ; Fractional cointegration ; Fractional cointegration Semiparametric model Unknown integration orders Standard inference ; Insurance, economics, finance ; Limit theorems ; Linear models ; Mathematical analysis ; Mathematics ; Measure and integration ; Monte Carlo simulation ; Parameter estimation ; Probability and statistics ; Probability theory and stochastic processes ; Sciences and techniques of general use ; Semiparametric model ; Standard inference ; Stationarity ; Statistical inference ; Statistics ; Studies ; Time series ; Unknown integration orders</subject><ispartof>Journal of econometrics, 2010-08, Vol.157 (2), p.492-511</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Aug 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c576t-46215318b89ebd0af29c370d3632066674661f6ea0f41465b83825983a81198c3</citedby><cites>FETCH-LOGICAL-c576t-46215318b89ebd0af29c370d3632066674661f6ea0f41465b83825983a81198c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jeconom.2010.04.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,3996,27911,27912,45982</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23015233$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeeeconom/v_3a157_3ay_3a2010_3ai_3a2_3ap_3a492-511.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Hualde, J.</creatorcontrib><creatorcontrib>Robinson, P.M.</creatorcontrib><title>Semiparametric inference in multivariate fractionally cointegrated systems</title><title>Journal of econometrics</title><description>A semiparametric multivariate fractionally cointegrated system is considered, integration orders possibly being unknown and I ( 0 ) unobservable inputs having nonparametric spectral density. Two estimates of the vector of cointegrating parameters ν are considered. One involves inverse spectral weighting and the other is unweighted but uses a spectral estimate at frequency zero. Both corresponding Wald statistics for testing linear restrictions on ν are shown to have a standard null χ 2 limit distribution under quite general conditions. Notably, this outcome is irrespective of whether cointegrating relations are “strong” (when the difference between integration orders of observables and cointegrating errors exceeds 1/2), or “weak” (when that difference is less than 1/2), or when both cases are involved. Finite-sample properties are examined in a Monte Carlo study and an empirical example is presented.</description><subject>Applications</subject><subject>Cointegration</subject><subject>Cointegration analysis</subject><subject>Distribution theory</subject><subject>Econometrics</subject><subject>Estimating techniques</subject><subject>Estimation</subject><subject>Exact sciences and technology</subject><subject>Fractional cointegration</subject><subject>Fractional cointegration Semiparametric model Unknown integration orders Standard inference</subject><subject>Insurance, economics, finance</subject><subject>Limit theorems</subject><subject>Linear models</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Measure and integration</subject><subject>Monte Carlo simulation</subject><subject>Parameter estimation</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Sciences and techniques of general use</subject><subject>Semiparametric model</subject><subject>Standard inference</subject><subject>Stationarity</subject><subject>Statistical inference</subject><subject>Statistics</subject><subject>Studies</subject><subject>Time series</subject><subject>Unknown integration orders</subject><issn>0304-4076</issn><issn>1872-6895</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFkU1r3DAQhkVpodu0P6FgAqEnb0aflk-hhH4mkEPas9DK41bGthxJu7D_vtp6yaGXCkYzSM87jF4R8p7ClgJV18N2QBfmMG0ZlDMQWwD2gmyoblitdCtfkg1wELWARr0mb1IaAEAKzTfk-yNOfrHRTpijd5Wfe4w4OyxVNe3H7A82epux6qN12YfZjuOxcsHPGX_FctFV6ZgyTuktedXbMeG7c74gPz9_-nH7tb5_-PLt9uN97WSjci0Uo5JTvdMt7jqwPWsdb6DjijNQSjVCKdortNALKpTcaa6ZbDW3mtJWO35BPqx9lxie9piymXxyOI52xrBPppGSSilbKOTlP-QQ9rG8IBnJNLCGC1EguUIuhpQi9maJfrLxaCiYk79mMGd_zclfA8IUf4vubtVFXNA9i7CsFT4Ybqlsyn4s8VfKrT-VJZYSomVGUmp-56l0uzqPapOzYzF7dj49d2UcqGScF-5m5bA4fPAYTXL-9F-dj-iy6YL_z9x_AMQrq5k</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>Hualde, J.</creator><creator>Robinson, P.M.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20100801</creationdate><title>Semiparametric inference in multivariate fractionally cointegrated systems</title><author>Hualde, J. ; Robinson, P.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c576t-46215318b89ebd0af29c370d3632066674661f6ea0f41465b83825983a81198c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applications</topic><topic>Cointegration</topic><topic>Cointegration analysis</topic><topic>Distribution theory</topic><topic>Econometrics</topic><topic>Estimating techniques</topic><topic>Estimation</topic><topic>Exact sciences and technology</topic><topic>Fractional cointegration</topic><topic>Fractional cointegration Semiparametric model Unknown integration orders Standard inference</topic><topic>Insurance, economics, finance</topic><topic>Limit theorems</topic><topic>Linear models</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Measure and integration</topic><topic>Monte Carlo simulation</topic><topic>Parameter estimation</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Sciences and techniques of general use</topic><topic>Semiparametric model</topic><topic>Standard inference</topic><topic>Stationarity</topic><topic>Statistical inference</topic><topic>Statistics</topic><topic>Studies</topic><topic>Time series</topic><topic>Unknown integration orders</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hualde, J.</creatorcontrib><creatorcontrib>Robinson, P.M.</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of econometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hualde, J.</au><au>Robinson, P.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semiparametric inference in multivariate fractionally cointegrated systems</atitle><jtitle>Journal of econometrics</jtitle><date>2010-08-01</date><risdate>2010</risdate><volume>157</volume><issue>2</issue><spage>492</spage><epage>511</epage><pages>492-511</pages><issn>0304-4076</issn><eissn>1872-6895</eissn><coden>JECMB6</coden><abstract>A semiparametric multivariate fractionally cointegrated system is considered, integration orders possibly being unknown and I ( 0 ) unobservable inputs having nonparametric spectral density. Two estimates of the vector of cointegrating parameters ν are considered. One involves inverse spectral weighting and the other is unweighted but uses a spectral estimate at frequency zero. Both corresponding Wald statistics for testing linear restrictions on ν are shown to have a standard null χ 2 limit distribution under quite general conditions. Notably, this outcome is irrespective of whether cointegrating relations are “strong” (when the difference between integration orders of observables and cointegrating errors exceeds 1/2), or “weak” (when that difference is less than 1/2), or when both cases are involved. Finite-sample properties are examined in a Monte Carlo study and an empirical example is presented.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jeconom.2010.04.002</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-4076
ispartof Journal of econometrics, 2010-08, Vol.157 (2), p.492-511
issn 0304-4076
1872-6895
language eng
recordid cdi_proquest_miscellaneous_755155590
source RePEc; ScienceDirect Journals (5 years ago - present)
subjects Applications
Cointegration
Cointegration analysis
Distribution theory
Econometrics
Estimating techniques
Estimation
Exact sciences and technology
Fractional cointegration
Fractional cointegration Semiparametric model Unknown integration orders Standard inference
Insurance, economics, finance
Limit theorems
Linear models
Mathematical analysis
Mathematics
Measure and integration
Monte Carlo simulation
Parameter estimation
Probability and statistics
Probability theory and stochastic processes
Sciences and techniques of general use
Semiparametric model
Standard inference
Stationarity
Statistical inference
Statistics
Studies
Time series
Unknown integration orders
title Semiparametric inference in multivariate fractionally cointegrated systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T00%3A58%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semiparametric%20inference%20in%20multivariate%20fractionally%20cointegrated%20systems&rft.jtitle=Journal%20of%20econometrics&rft.au=Hualde,%20J.&rft.date=2010-08-01&rft.volume=157&rft.issue=2&rft.spage=492&rft.epage=511&rft.pages=492-511&rft.issn=0304-4076&rft.eissn=1872-6895&rft.coden=JECMB6&rft_id=info:doi/10.1016/j.jeconom.2010.04.002&rft_dat=%3Cproquest_cross%3E2069643121%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=528027344&rft_id=info:pmid/&rft_els_id=S0304407610001089&rfr_iscdi=true