A Novel Bioreactor for Stimulating Skeletal Muscle In Vitro
For over 300 years, scientists have understood that stimulation, in the form of an electrical impulse, is required for normal muscle function. More recently, the role of specific parameters of the electrical impulse (i.e., the pulse amplitude, pulse width, and work-to-rest ratio) has become better a...
Gespeichert in:
Veröffentlicht in: | Tissue engineering. Part C, Methods Methods, 2010-08, Vol.16 (4), p.711-718 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 718 |
---|---|
container_issue | 4 |
container_start_page | 711 |
container_title | Tissue engineering. Part C, Methods |
container_volume | 16 |
creator | Donnelly, Kenneth Khodabukus, Alastair Philp, Andrew Deldicque, Louise Dennis, Robert G. Baar, Keith |
description | For over 300 years, scientists have understood that stimulation, in the form of an electrical impulse, is required for normal muscle function. More recently, the role of specific parameters of the electrical impulse (i.e., the pulse amplitude, pulse width, and work-to-rest ratio) has become better appreciated. However, most existing bioreactor systems do not permit sufficient control over these parameters. Therefore, the aim of the current study was to engineer an inexpensive muscle electrical stimulation bioreactor to apply physiologically relevant electrical stimulation patterns to tissue-engineered muscles and monolayers in culture. A low-powered microcontroller and a DC–DC converter were used to power a pulse circuit that converted a 4.5 V input to outputs of up to 50 V, with pulse widths from 0.05 to 4 ms, and frequencies up to 100 Hz (with certain operational limitations). When two-dimensional cultures were stimulated at high frequencies (100 Hz), this resulted in an increase in the rate of protein synthesis (at 12 h, control [CTL] = 5.0 ± 0.16; 10 Hz = 5.0 ± 0.07; and 100 Hz = 5.5 ± 0.13 fmol/min/mg) showing that this was an anabolic signal. When three-dimensional engineered muscles were stimulated at 0.1 ms and one or two times rheobase, stimulation improved force production (CTL = 0.07 ± 0.009; 1.25 V/mm = 0.10 ± 0.011; 2.5 V/mm = 0.14146 ± 0.012; and 5 V/mm = 0.03756 ± 0.008 kN/mm
2
) and excitability (CTL = 0.53 ± 0.022; 1.25 V/mm = 0.44 ± 0.025; 2.5 V/mm = 0.41 ± 0.012; and 5 V/mm = 0.60 ± 0.021 V/mm), suggesting enhanced maturation. Together, these data show that the physiology and function of muscles can be improved
in vitro
using a bioreactor that allows the control of pulse amplitude, pulse width, pulse frequency, and work-to-rest ratio. |
doi_str_mv | 10.1089/ten.tec.2009.0125 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_755141561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A248405515</galeid><sourcerecordid>A248405515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c522t-748495876807c2750939a4e1a00e954010a6218c5b9587e78e10bd4580dabc7b3</originalsourceid><addsrcrecordid>eNqNkUuLFTEQhYMozkN_gBtpdDGr21bSnU6Cq-vgY2DUxajbkM6tHjKmk5kkLfjvTXMviiIooUgI3zlVxSHkCYWWglQvCoa2oG0ZgGqBMn6PHFPViU3XKXb_51v2R-Qk5xuAAQahHpIjqiQINshj8nLbfIjf0DevXExobImpmWpdFTcv3hQXrpurr-ixGN-8X7L12FyE5osrKT4iDybjMz4-3Kfk85vXn87fbS4_vr04315uLGesbEQve8WlGGpPywQH1SnTIzUAqHgPFMzAqLR8XCkUEimMu55L2JnRirE7JWd739sU7xbMRc8uW_TeBIxL1oJz2lM-0H-TXW3HFOsr-ewP8iYuKdQ19FAnrH6yq9DzPXRtPGoXpliSsaul3rK6FdTGvFLtX6h6djg7GwNOrv7_JqB7gU0x54STvk1uNum7pqDXYHUNtpbVa7B6DbZqnh7mXcYZd78UhyQrIPbA-m1C8A5HTOU_rH8AxZmtdg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>650914183</pqid></control><display><type>article</type><title>A Novel Bioreactor for Stimulating Skeletal Muscle In Vitro</title><source>Mary Ann Liebert Online Subscription</source><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Donnelly, Kenneth ; Khodabukus, Alastair ; Philp, Andrew ; Deldicque, Louise ; Dennis, Robert G. ; Baar, Keith</creator><creatorcontrib>Donnelly, Kenneth ; Khodabukus, Alastair ; Philp, Andrew ; Deldicque, Louise ; Dennis, Robert G. ; Baar, Keith</creatorcontrib><description>For over 300 years, scientists have understood that stimulation, in the form of an electrical impulse, is required for normal muscle function. More recently, the role of specific parameters of the electrical impulse (i.e., the pulse amplitude, pulse width, and work-to-rest ratio) has become better appreciated. However, most existing bioreactor systems do not permit sufficient control over these parameters. Therefore, the aim of the current study was to engineer an inexpensive muscle electrical stimulation bioreactor to apply physiologically relevant electrical stimulation patterns to tissue-engineered muscles and monolayers in culture. A low-powered microcontroller and a DC–DC converter were used to power a pulse circuit that converted a 4.5 V input to outputs of up to 50 V, with pulse widths from 0.05 to 4 ms, and frequencies up to 100 Hz (with certain operational limitations). When two-dimensional cultures were stimulated at high frequencies (100 Hz), this resulted in an increase in the rate of protein synthesis (at 12 h, control [CTL] = 5.0 ± 0.16; 10 Hz = 5.0 ± 0.07; and 100 Hz = 5.5 ± 0.13 fmol/min/mg) showing that this was an anabolic signal. When three-dimensional engineered muscles were stimulated at 0.1 ms and one or two times rheobase, stimulation improved force production (CTL = 0.07 ± 0.009; 1.25 V/mm = 0.10 ± 0.011; 2.5 V/mm = 0.14146 ± 0.012; and 5 V/mm = 0.03756 ± 0.008 kN/mm
2
) and excitability (CTL = 0.53 ± 0.022; 1.25 V/mm = 0.44 ± 0.025; 2.5 V/mm = 0.41 ± 0.012; and 5 V/mm = 0.60 ± 0.021 V/mm), suggesting enhanced maturation. Together, these data show that the physiology and function of muscles can be improved
in vitro
using a bioreactor that allows the control of pulse amplitude, pulse width, pulse frequency, and work-to-rest ratio.</description><identifier>ISSN: 1937-3384</identifier><identifier>EISSN: 1937-3392</identifier><identifier>DOI: 10.1089/ten.tec.2009.0125</identifier><identifier>PMID: 19807268</identifier><language>eng</language><publisher>United States: Mary Ann Liebert, Inc</publisher><subject>Animals ; Biomechanical Phenomena ; Bioreactors ; Cell Line ; Electric stimulation ; Electric Stimulation - instrumentation ; Methods ; Mice ; Muscle, Skeletal - physiology ; Muscles ; Muscular system ; Physiological aspects ; Protein Biosynthesis ; Simulation ; Skeletal system ; T cells ; Tissue Engineering - instrumentation</subject><ispartof>Tissue engineering. Part C, Methods, 2010-08, Vol.16 (4), p.711-718</ispartof><rights>2010, Mary Ann Liebert, Inc.</rights><rights>COPYRIGHT 2010 Mary Ann Liebert, Inc.</rights><rights>(©) Copyright 2010, Mary Ann Liebert, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c522t-748495876807c2750939a4e1a00e954010a6218c5b9587e78e10bd4580dabc7b3</citedby><cites>FETCH-LOGICAL-c522t-748495876807c2750939a4e1a00e954010a6218c5b9587e78e10bd4580dabc7b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.liebertpub.com/doi/epdf/10.1089/ten.tec.2009.0125$$EPDF$$P50$$Gmaryannliebert$$H</linktopdf><linktohtml>$$Uhttps://www.liebertpub.com/doi/full/10.1089/ten.tec.2009.0125$$EHTML$$P50$$Gmaryannliebert$$H</linktohtml><link.rule.ids>314,776,780,3028,21703,27903,27904,55269,55281</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19807268$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Donnelly, Kenneth</creatorcontrib><creatorcontrib>Khodabukus, Alastair</creatorcontrib><creatorcontrib>Philp, Andrew</creatorcontrib><creatorcontrib>Deldicque, Louise</creatorcontrib><creatorcontrib>Dennis, Robert G.</creatorcontrib><creatorcontrib>Baar, Keith</creatorcontrib><title>A Novel Bioreactor for Stimulating Skeletal Muscle In Vitro</title><title>Tissue engineering. Part C, Methods</title><addtitle>Tissue Eng Part C Methods</addtitle><description>For over 300 years, scientists have understood that stimulation, in the form of an electrical impulse, is required for normal muscle function. More recently, the role of specific parameters of the electrical impulse (i.e., the pulse amplitude, pulse width, and work-to-rest ratio) has become better appreciated. However, most existing bioreactor systems do not permit sufficient control over these parameters. Therefore, the aim of the current study was to engineer an inexpensive muscle electrical stimulation bioreactor to apply physiologically relevant electrical stimulation patterns to tissue-engineered muscles and monolayers in culture. A low-powered microcontroller and a DC–DC converter were used to power a pulse circuit that converted a 4.5 V input to outputs of up to 50 V, with pulse widths from 0.05 to 4 ms, and frequencies up to 100 Hz (with certain operational limitations). When two-dimensional cultures were stimulated at high frequencies (100 Hz), this resulted in an increase in the rate of protein synthesis (at 12 h, control [CTL] = 5.0 ± 0.16; 10 Hz = 5.0 ± 0.07; and 100 Hz = 5.5 ± 0.13 fmol/min/mg) showing that this was an anabolic signal. When three-dimensional engineered muscles were stimulated at 0.1 ms and one or two times rheobase, stimulation improved force production (CTL = 0.07 ± 0.009; 1.25 V/mm = 0.10 ± 0.011; 2.5 V/mm = 0.14146 ± 0.012; and 5 V/mm = 0.03756 ± 0.008 kN/mm
2
) and excitability (CTL = 0.53 ± 0.022; 1.25 V/mm = 0.44 ± 0.025; 2.5 V/mm = 0.41 ± 0.012; and 5 V/mm = 0.60 ± 0.021 V/mm), suggesting enhanced maturation. Together, these data show that the physiology and function of muscles can be improved
in vitro
using a bioreactor that allows the control of pulse amplitude, pulse width, pulse frequency, and work-to-rest ratio.</description><subject>Animals</subject><subject>Biomechanical Phenomena</subject><subject>Bioreactors</subject><subject>Cell Line</subject><subject>Electric stimulation</subject><subject>Electric Stimulation - instrumentation</subject><subject>Methods</subject><subject>Mice</subject><subject>Muscle, Skeletal - physiology</subject><subject>Muscles</subject><subject>Muscular system</subject><subject>Physiological aspects</subject><subject>Protein Biosynthesis</subject><subject>Simulation</subject><subject>Skeletal system</subject><subject>T cells</subject><subject>Tissue Engineering - instrumentation</subject><issn>1937-3384</issn><issn>1937-3392</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkUuLFTEQhYMozkN_gBtpdDGr21bSnU6Cq-vgY2DUxajbkM6tHjKmk5kkLfjvTXMviiIooUgI3zlVxSHkCYWWglQvCoa2oG0ZgGqBMn6PHFPViU3XKXb_51v2R-Qk5xuAAQahHpIjqiQINshj8nLbfIjf0DevXExobImpmWpdFTcv3hQXrpurr-ixGN-8X7L12FyE5osrKT4iDybjMz4-3Kfk85vXn87fbS4_vr04315uLGesbEQve8WlGGpPywQH1SnTIzUAqHgPFMzAqLR8XCkUEimMu55L2JnRirE7JWd739sU7xbMRc8uW_TeBIxL1oJz2lM-0H-TXW3HFOsr-ewP8iYuKdQ19FAnrH6yq9DzPXRtPGoXpliSsaul3rK6FdTGvFLtX6h6djg7GwNOrv7_JqB7gU0x54STvk1uNum7pqDXYHUNtpbVa7B6DbZqnh7mXcYZd78UhyQrIPbA-m1C8A5HTOU_rH8AxZmtdg</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>Donnelly, Kenneth</creator><creator>Khodabukus, Alastair</creator><creator>Philp, Andrew</creator><creator>Deldicque, Louise</creator><creator>Dennis, Robert G.</creator><creator>Baar, Keith</creator><general>Mary Ann Liebert, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7T5</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20100801</creationdate><title>A Novel Bioreactor for Stimulating Skeletal Muscle In Vitro</title><author>Donnelly, Kenneth ; Khodabukus, Alastair ; Philp, Andrew ; Deldicque, Louise ; Dennis, Robert G. ; Baar, Keith</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c522t-748495876807c2750939a4e1a00e954010a6218c5b9587e78e10bd4580dabc7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Biomechanical Phenomena</topic><topic>Bioreactors</topic><topic>Cell Line</topic><topic>Electric stimulation</topic><topic>Electric Stimulation - instrumentation</topic><topic>Methods</topic><topic>Mice</topic><topic>Muscle, Skeletal - physiology</topic><topic>Muscles</topic><topic>Muscular system</topic><topic>Physiological aspects</topic><topic>Protein Biosynthesis</topic><topic>Simulation</topic><topic>Skeletal system</topic><topic>T cells</topic><topic>Tissue Engineering - instrumentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Donnelly, Kenneth</creatorcontrib><creatorcontrib>Khodabukus, Alastair</creatorcontrib><creatorcontrib>Philp, Andrew</creatorcontrib><creatorcontrib>Deldicque, Louise</creatorcontrib><creatorcontrib>Dennis, Robert G.</creatorcontrib><creatorcontrib>Baar, Keith</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Tissue engineering. Part C, Methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Donnelly, Kenneth</au><au>Khodabukus, Alastair</au><au>Philp, Andrew</au><au>Deldicque, Louise</au><au>Dennis, Robert G.</au><au>Baar, Keith</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Bioreactor for Stimulating Skeletal Muscle In Vitro</atitle><jtitle>Tissue engineering. Part C, Methods</jtitle><addtitle>Tissue Eng Part C Methods</addtitle><date>2010-08-01</date><risdate>2010</risdate><volume>16</volume><issue>4</issue><spage>711</spage><epage>718</epage><pages>711-718</pages><issn>1937-3384</issn><eissn>1937-3392</eissn><abstract>For over 300 years, scientists have understood that stimulation, in the form of an electrical impulse, is required for normal muscle function. More recently, the role of specific parameters of the electrical impulse (i.e., the pulse amplitude, pulse width, and work-to-rest ratio) has become better appreciated. However, most existing bioreactor systems do not permit sufficient control over these parameters. Therefore, the aim of the current study was to engineer an inexpensive muscle electrical stimulation bioreactor to apply physiologically relevant electrical stimulation patterns to tissue-engineered muscles and monolayers in culture. A low-powered microcontroller and a DC–DC converter were used to power a pulse circuit that converted a 4.5 V input to outputs of up to 50 V, with pulse widths from 0.05 to 4 ms, and frequencies up to 100 Hz (with certain operational limitations). When two-dimensional cultures were stimulated at high frequencies (100 Hz), this resulted in an increase in the rate of protein synthesis (at 12 h, control [CTL] = 5.0 ± 0.16; 10 Hz = 5.0 ± 0.07; and 100 Hz = 5.5 ± 0.13 fmol/min/mg) showing that this was an anabolic signal. When three-dimensional engineered muscles were stimulated at 0.1 ms and one or two times rheobase, stimulation improved force production (CTL = 0.07 ± 0.009; 1.25 V/mm = 0.10 ± 0.011; 2.5 V/mm = 0.14146 ± 0.012; and 5 V/mm = 0.03756 ± 0.008 kN/mm
2
) and excitability (CTL = 0.53 ± 0.022; 1.25 V/mm = 0.44 ± 0.025; 2.5 V/mm = 0.41 ± 0.012; and 5 V/mm = 0.60 ± 0.021 V/mm), suggesting enhanced maturation. Together, these data show that the physiology and function of muscles can be improved
in vitro
using a bioreactor that allows the control of pulse amplitude, pulse width, pulse frequency, and work-to-rest ratio.</abstract><cop>United States</cop><pub>Mary Ann Liebert, Inc</pub><pmid>19807268</pmid><doi>10.1089/ten.tec.2009.0125</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1937-3384 |
ispartof | Tissue engineering. Part C, Methods, 2010-08, Vol.16 (4), p.711-718 |
issn | 1937-3384 1937-3392 |
language | eng |
recordid | cdi_proquest_miscellaneous_755141561 |
source | Mary Ann Liebert Online Subscription; MEDLINE; Alma/SFX Local Collection |
subjects | Animals Biomechanical Phenomena Bioreactors Cell Line Electric stimulation Electric Stimulation - instrumentation Methods Mice Muscle, Skeletal - physiology Muscles Muscular system Physiological aspects Protein Biosynthesis Simulation Skeletal system T cells Tissue Engineering - instrumentation |
title | A Novel Bioreactor for Stimulating Skeletal Muscle In Vitro |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T13%3A56%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Bioreactor%20for%20Stimulating%20Skeletal%20Muscle%20In%20Vitro&rft.jtitle=Tissue%20engineering.%20Part%20C,%20Methods&rft.au=Donnelly,%20Kenneth&rft.date=2010-08-01&rft.volume=16&rft.issue=4&rft.spage=711&rft.epage=718&rft.pages=711-718&rft.issn=1937-3384&rft.eissn=1937-3392&rft_id=info:doi/10.1089/ten.tec.2009.0125&rft_dat=%3Cgale_proqu%3EA248405515%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=650914183&rft_id=info:pmid/19807268&rft_galeid=A248405515&rfr_iscdi=true |