A photosynthesis-based dry deposition modeling approach

We present a dry deposition modeling approach that includesvegetation-atmosphere interactions through photosynthesis/carbonassimilation relationships. Gas deposition velocity (V^sub d^) is calculated using an electrical resistance-analogapproach in a coupled soil-vegetation-atmosphere transfer (SVAT...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water, air, and soil pollution air, and soil pollution, 2003-04, Vol.144 (1-4), p.171-194
Hauptverfasser: NIYOGI, Dev Dutta S, ALAPATY, Kiran, RAMAN, Sethu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 194
container_issue 1-4
container_start_page 171
container_title Water, air, and soil pollution
container_volume 144
creator NIYOGI, Dev Dutta S
ALAPATY, Kiran
RAMAN, Sethu
description We present a dry deposition modeling approach that includesvegetation-atmosphere interactions through photosynthesis/carbonassimilation relationships. Gas deposition velocity (V^sub d^) is calculated using an electrical resistance-analogapproach in a coupled soil-vegetation-atmosphere transfer (SVAT)model. For this, a photosynthesis-based surface evapotranspirationand gas exchange model is dynamically coupled to an atmospheric model with prognostic soil hydrology andsurface energy balance. The effective surface resistance(composed of aerodynamic, boundary layer, and canopy-basedresistances) is calculated for a realistic and fully interactiveestimation of gaseous deposition velocity over natural surfaces.Based on this coupled framework, the photosynthesis-based gasdeposition approach is evaluated using observed depositionvelocity estimates for ozone over a soybean field (C3photosynthesis pathway) and a corn field (C4 photosynthesispathway). Overall, observed V^sub d^ and modeled V^sub d^ show good qualitative and quantitative agreement.Results suggest that photosynthesis-based physiologicalapproaches can be adopted to efficiently develop depositionvelocity estimates over natural surfaces. Such a physiologicalapproach can also be used for generalizing results from fieldmeasurements and for investigating the controlling relationshipsamong various atmospheric and surface variables in estimatingdeposition velocity.[PUBLICATION ABSTRACT]
doi_str_mv 10.1023/A:1022955220354
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_755133627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2119463081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c282t-1f12f2cf182ede6ab695bdbd616f7a52e6897c85998115f8e3455e7487b5c4713</originalsourceid><addsrcrecordid>eNqFkTtPwzAUhS0EEqUws0ZIwBTw6_rBVlW8pEosMEeOY1NXaRziZOi_x0AnBjjLWT6do3suQucE3xBM2e3iLhvVAJRiBvwAzQhIVlLN6CGaYcx1KbTUx-gkpQ3O0krOkFwU_TqOMe26ce1SSGVtkmuKZtgVjetjCmOIXbGNjWtD916Yvh-isetTdORNm9zZ3ufo7eH-dflUrl4en5eLVWmpomNJPKGeWk8UdY0TphYa6qZuBBFeGqBOKC2tAq0VIeCVYxzASa5kDZZLwubo-ic3135MLo3VNiTr2tZ0Lk6pkgCEMUFlJq_-JImSBJgg_4Nc5KEAZ_DiF7iJ09DlcyvJhQTOxFft5R4yyZrWD6azIVX9ELZm2H2HYZwf8QkCz3yh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>746754367</pqid></control><display><type>article</type><title>A photosynthesis-based dry deposition modeling approach</title><source>SpringerLink Journals</source><creator>NIYOGI, Dev Dutta S ; ALAPATY, Kiran ; RAMAN, Sethu</creator><creatorcontrib>NIYOGI, Dev Dutta S ; ALAPATY, Kiran ; RAMAN, Sethu</creatorcontrib><description>We present a dry deposition modeling approach that includesvegetation-atmosphere interactions through photosynthesis/carbonassimilation relationships. Gas deposition velocity (V^sub d^) is calculated using an electrical resistance-analogapproach in a coupled soil-vegetation-atmosphere transfer (SVAT)model. For this, a photosynthesis-based surface evapotranspirationand gas exchange model is dynamically coupled to an atmospheric model with prognostic soil hydrology andsurface energy balance. The effective surface resistance(composed of aerodynamic, boundary layer, and canopy-basedresistances) is calculated for a realistic and fully interactiveestimation of gaseous deposition velocity over natural surfaces.Based on this coupled framework, the photosynthesis-based gasdeposition approach is evaluated using observed depositionvelocity estimates for ozone over a soybean field (C3photosynthesis pathway) and a corn field (C4 photosynthesispathway). Overall, observed V^sub d^ and modeled V^sub d^ show good qualitative and quantitative agreement.Results suggest that photosynthesis-based physiologicalapproaches can be adopted to efficiently develop depositionvelocity estimates over natural surfaces. Such a physiologicalapproach can also be used for generalizing results from fieldmeasurements and for investigating the controlling relationshipsamong various atmospheric and surface variables in estimatingdeposition velocity.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0049-6979</identifier><identifier>EISSN: 1573-2932</identifier><identifier>DOI: 10.1023/A:1022955220354</identifier><identifier>CODEN: WAPLAC</identifier><language>eng</language><publisher>Dordrecht: Springer</publisher><subject>Animal, plant and microbial ecology ; Applied ecology ; Applied sciences ; Atmosphere ; Atmospheric pollution ; Biological and medical sciences ; Boundary layers ; Dry deposition ; Ecotoxicology, biological effects of pollution ; Electrical resistivity ; Energy balance ; Environmental monitoring ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; Gas exchange ; Hydrology ; Photosynthesis ; Pollutants physicochemistry study: properties, effects, reactions, transport and distribution ; Pollution ; Soil hydrology ; Soybeans ; Terrestrial environment, soil, air ; Velocity</subject><ispartof>Water, air, and soil pollution, 2003-04, Vol.144 (1-4), p.171-194</ispartof><rights>2003 INIST-CNRS</rights><rights>Kluwer Academic Publishers 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c282t-1f12f2cf182ede6ab695bdbd616f7a52e6897c85998115f8e3455e7487b5c4713</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14660057$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>NIYOGI, Dev Dutta S</creatorcontrib><creatorcontrib>ALAPATY, Kiran</creatorcontrib><creatorcontrib>RAMAN, Sethu</creatorcontrib><title>A photosynthesis-based dry deposition modeling approach</title><title>Water, air, and soil pollution</title><description>We present a dry deposition modeling approach that includesvegetation-atmosphere interactions through photosynthesis/carbonassimilation relationships. Gas deposition velocity (V^sub d^) is calculated using an electrical resistance-analogapproach in a coupled soil-vegetation-atmosphere transfer (SVAT)model. For this, a photosynthesis-based surface evapotranspirationand gas exchange model is dynamically coupled to an atmospheric model with prognostic soil hydrology andsurface energy balance. The effective surface resistance(composed of aerodynamic, boundary layer, and canopy-basedresistances) is calculated for a realistic and fully interactiveestimation of gaseous deposition velocity over natural surfaces.Based on this coupled framework, the photosynthesis-based gasdeposition approach is evaluated using observed depositionvelocity estimates for ozone over a soybean field (C3photosynthesis pathway) and a corn field (C4 photosynthesispathway). Overall, observed V^sub d^ and modeled V^sub d^ show good qualitative and quantitative agreement.Results suggest that photosynthesis-based physiologicalapproaches can be adopted to efficiently develop depositionvelocity estimates over natural surfaces. Such a physiologicalapproach can also be used for generalizing results from fieldmeasurements and for investigating the controlling relationshipsamong various atmospheric and surface variables in estimatingdeposition velocity.[PUBLICATION ABSTRACT]</description><subject>Animal, plant and microbial ecology</subject><subject>Applied ecology</subject><subject>Applied sciences</subject><subject>Atmosphere</subject><subject>Atmospheric pollution</subject><subject>Biological and medical sciences</subject><subject>Boundary layers</subject><subject>Dry deposition</subject><subject>Ecotoxicology, biological effects of pollution</subject><subject>Electrical resistivity</subject><subject>Energy balance</subject><subject>Environmental monitoring</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gas exchange</subject><subject>Hydrology</subject><subject>Photosynthesis</subject><subject>Pollutants physicochemistry study: properties, effects, reactions, transport and distribution</subject><subject>Pollution</subject><subject>Soil hydrology</subject><subject>Soybeans</subject><subject>Terrestrial environment, soil, air</subject><subject>Velocity</subject><issn>0049-6979</issn><issn>1573-2932</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqFkTtPwzAUhS0EEqUws0ZIwBTw6_rBVlW8pEosMEeOY1NXaRziZOi_x0AnBjjLWT6do3suQucE3xBM2e3iLhvVAJRiBvwAzQhIVlLN6CGaYcx1KbTUx-gkpQ3O0krOkFwU_TqOMe26ce1SSGVtkmuKZtgVjetjCmOIXbGNjWtD916Yvh-isetTdORNm9zZ3ufo7eH-dflUrl4en5eLVWmpomNJPKGeWk8UdY0TphYa6qZuBBFeGqBOKC2tAq0VIeCVYxzASa5kDZZLwubo-ic3135MLo3VNiTr2tZ0Lk6pkgCEMUFlJq_-JImSBJgg_4Nc5KEAZ_DiF7iJ09DlcyvJhQTOxFft5R4yyZrWD6azIVX9ELZm2H2HYZwf8QkCz3yh</recordid><startdate>20030401</startdate><enddate>20030401</enddate><creator>NIYOGI, Dev Dutta S</creator><creator>ALAPATY, Kiran</creator><creator>RAMAN, Sethu</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>3V.</scope><scope>7QH</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>L.G</scope><scope>M0C</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7ST</scope><scope>SOI</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20030401</creationdate><title>A photosynthesis-based dry deposition modeling approach</title><author>NIYOGI, Dev Dutta S ; ALAPATY, Kiran ; RAMAN, Sethu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c282t-1f12f2cf182ede6ab695bdbd616f7a52e6897c85998115f8e3455e7487b5c4713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Animal, plant and microbial ecology</topic><topic>Applied ecology</topic><topic>Applied sciences</topic><topic>Atmosphere</topic><topic>Atmospheric pollution</topic><topic>Biological and medical sciences</topic><topic>Boundary layers</topic><topic>Dry deposition</topic><topic>Ecotoxicology, biological effects of pollution</topic><topic>Electrical resistivity</topic><topic>Energy balance</topic><topic>Environmental monitoring</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gas exchange</topic><topic>Hydrology</topic><topic>Photosynthesis</topic><topic>Pollutants physicochemistry study: properties, effects, reactions, transport and distribution</topic><topic>Pollution</topic><topic>Soil hydrology</topic><topic>Soybeans</topic><topic>Terrestrial environment, soil, air</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>NIYOGI, Dev Dutta S</creatorcontrib><creatorcontrib>ALAPATY, Kiran</creatorcontrib><creatorcontrib>RAMAN, Sethu</creatorcontrib><collection>Pascal-Francis</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Water, air, and soil pollution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>NIYOGI, Dev Dutta S</au><au>ALAPATY, Kiran</au><au>RAMAN, Sethu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A photosynthesis-based dry deposition modeling approach</atitle><jtitle>Water, air, and soil pollution</jtitle><date>2003-04-01</date><risdate>2003</risdate><volume>144</volume><issue>1-4</issue><spage>171</spage><epage>194</epage><pages>171-194</pages><issn>0049-6979</issn><eissn>1573-2932</eissn><coden>WAPLAC</coden><abstract>We present a dry deposition modeling approach that includesvegetation-atmosphere interactions through photosynthesis/carbonassimilation relationships. Gas deposition velocity (V^sub d^) is calculated using an electrical resistance-analogapproach in a coupled soil-vegetation-atmosphere transfer (SVAT)model. For this, a photosynthesis-based surface evapotranspirationand gas exchange model is dynamically coupled to an atmospheric model with prognostic soil hydrology andsurface energy balance. The effective surface resistance(composed of aerodynamic, boundary layer, and canopy-basedresistances) is calculated for a realistic and fully interactiveestimation of gaseous deposition velocity over natural surfaces.Based on this coupled framework, the photosynthesis-based gasdeposition approach is evaluated using observed depositionvelocity estimates for ozone over a soybean field (C3photosynthesis pathway) and a corn field (C4 photosynthesispathway). Overall, observed V^sub d^ and modeled V^sub d^ show good qualitative and quantitative agreement.Results suggest that photosynthesis-based physiologicalapproaches can be adopted to efficiently develop depositionvelocity estimates over natural surfaces. Such a physiologicalapproach can also be used for generalizing results from fieldmeasurements and for investigating the controlling relationshipsamong various atmospheric and surface variables in estimatingdeposition velocity.[PUBLICATION ABSTRACT]</abstract><cop>Dordrecht</cop><pub>Springer</pub><doi>10.1023/A:1022955220354</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0049-6979
ispartof Water, air, and soil pollution, 2003-04, Vol.144 (1-4), p.171-194
issn 0049-6979
1573-2932
language eng
recordid cdi_proquest_miscellaneous_755133627
source SpringerLink Journals
subjects Animal, plant and microbial ecology
Applied ecology
Applied sciences
Atmosphere
Atmospheric pollution
Biological and medical sciences
Boundary layers
Dry deposition
Ecotoxicology, biological effects of pollution
Electrical resistivity
Energy balance
Environmental monitoring
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
Gas exchange
Hydrology
Photosynthesis
Pollutants physicochemistry study: properties, effects, reactions, transport and distribution
Pollution
Soil hydrology
Soybeans
Terrestrial environment, soil, air
Velocity
title A photosynthesis-based dry deposition modeling approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A10%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20photosynthesis-based%20dry%20deposition%20modeling%20approach&rft.jtitle=Water,%20air,%20and%20soil%20pollution&rft.au=NIYOGI,%20Dev%20Dutta%20S&rft.date=2003-04-01&rft.volume=144&rft.issue=1-4&rft.spage=171&rft.epage=194&rft.pages=171-194&rft.issn=0049-6979&rft.eissn=1573-2932&rft.coden=WAPLAC&rft_id=info:doi/10.1023/A:1022955220354&rft_dat=%3Cproquest_pasca%3E2119463081%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=746754367&rft_id=info:pmid/&rfr_iscdi=true