Predicting Search Performance for Multiple Targets

Performance in a visual search task is usually measured by the cumulative probability of locating a target, F(t), in a given time (t). Two extreme F(t) against (t) relationships have been postulated, one assuming that search is random, and the other assuming that search is systematic. However, these...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human factors 1980-12, Vol.22 (6), p.707-718
Hauptverfasser: Morawski, T., Drury, C. G., Karwan, M. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 718
container_issue 6
container_start_page 707
container_title Human factors
container_volume 22
creator Morawski, T.
Drury, C. G.
Karwan, M. H.
description Performance in a visual search task is usually measured by the cumulative probability of locating a target, F(t), in a given time (t). Two extreme F(t) against (t) relationships have been postulated, one assuming that search is random, and the other assuming that search is systematic. However, these relationships have only been available for the situation in which each search field contains a single occurrence of a single type of target. This paper extends both search models (random and systematic) first to the case of multiple occurrences of a single fault type within a search field and second to the case of multiple fault types. For systematic search, these two cases can be combined to predict the effects of multiple occurrences of multiple fault types. The general F(t) relationships are given in each case and illustrated with a worked example.
doi_str_mv 10.1177/001872088002200606
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_75491901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_001872088002200606</sage_id><sourcerecordid>75491901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-25153a2d01126e1beeff83da1fddd02d5a50d12e74c7dab29f44ea079a92ef083</originalsourceid><addsrcrecordid>eNqFkUFr20AQhZfSkDhu_0AhICj0pmRmdle7ewymbQIJCSQ5i7V25MrIlrMrHfLvI2MTSkvi0wzM997weEJ8QzhHNOYCAK0hsBaACKCA4pOYoFYmt2jxs5hsgXxLnIjTlJYwMk7qY3FsiCwonAi6jxyaqm_Wi-yBfaz-ZPcc6y6u_LribFyy26Htm03L2aOPC-7TF3FU-zbx1_2ciqdfPx9nV_nN3e_r2eVNXild9Dlp1NJTAEQqGOfMdW1l8FiHEICC9hoCEhtVmeDn5Gql2INx3hHXYOVU_Nj5bmL3PHDqy1WTKm5bv-ZuSKXRyqEDPAiStFI7PAyiJmnIFiP4_R9w2Q1xPaYt0RUWdSGd-pCSiFYZqbYxaEdVsUspcl1uYrPy8aVEKLc1lv_XOIrO9tbDfMXhTbLvbbxf7O7JL_ivt-87vgIvo6GU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1311847348</pqid></control><display><type>article</type><title>Predicting Search Performance for Multiple Targets</title><source>MEDLINE</source><source>Periodicals Index Online</source><source>SAGE Complete A-Z List</source><creator>Morawski, T. ; Drury, C. G. ; Karwan, M. H.</creator><creatorcontrib>Morawski, T. ; Drury, C. G. ; Karwan, M. H.</creatorcontrib><description>Performance in a visual search task is usually measured by the cumulative probability of locating a target, F(t), in a given time (t). Two extreme F(t) against (t) relationships have been postulated, one assuming that search is random, and the other assuming that search is systematic. However, these relationships have only been available for the situation in which each search field contains a single occurrence of a single type of target. This paper extends both search models (random and systematic) first to the case of multiple occurrences of a single fault type within a search field and second to the case of multiple fault types. For systematic search, these two cases can be combined to predict the effects of multiple occurrences of multiple fault types. The general F(t) relationships are given in each case and illustrated with a worked example.</description><identifier>ISSN: 0018-7208</identifier><identifier>EISSN: 1547-8181</identifier><identifier>DOI: 10.1177/001872088002200606</identifier><identifier>PMID: 7228041</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Female ; Humans ; Male ; Mathematics ; Models, Theoretical ; Performance prediction ; Searches ; Searching ; Space life sciences ; Vision, Ocular ; Visual Fields ; Visual Perception ; Visual tasks</subject><ispartof>Human factors, 1980-12, Vol.22 (6), p.707-718</ispartof><rights>Copyright Human Factors and Ergonomics Society Dec 1980</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-25153a2d01126e1beeff83da1fddd02d5a50d12e74c7dab29f44ea079a92ef083</citedby><cites>FETCH-LOGICAL-c456t-25153a2d01126e1beeff83da1fddd02d5a50d12e74c7dab29f44ea079a92ef083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/001872088002200606$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/001872088002200606$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21799,27848,27903,27904,43600,43601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/7228041$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Morawski, T.</creatorcontrib><creatorcontrib>Drury, C. G.</creatorcontrib><creatorcontrib>Karwan, M. H.</creatorcontrib><title>Predicting Search Performance for Multiple Targets</title><title>Human factors</title><addtitle>Hum Factors</addtitle><description>Performance in a visual search task is usually measured by the cumulative probability of locating a target, F(t), in a given time (t). Two extreme F(t) against (t) relationships have been postulated, one assuming that search is random, and the other assuming that search is systematic. However, these relationships have only been available for the situation in which each search field contains a single occurrence of a single type of target. This paper extends both search models (random and systematic) first to the case of multiple occurrences of a single fault type within a search field and second to the case of multiple fault types. For systematic search, these two cases can be combined to predict the effects of multiple occurrences of multiple fault types. The general F(t) relationships are given in each case and illustrated with a worked example.</description><subject>Female</subject><subject>Humans</subject><subject>Male</subject><subject>Mathematics</subject><subject>Models, Theoretical</subject><subject>Performance prediction</subject><subject>Searches</subject><subject>Searching</subject><subject>Space life sciences</subject><subject>Vision, Ocular</subject><subject>Visual Fields</subject><subject>Visual Perception</subject><subject>Visual tasks</subject><issn>0018-7208</issn><issn>1547-8181</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1980</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>K30</sourceid><recordid>eNqFkUFr20AQhZfSkDhu_0AhICj0pmRmdle7ewymbQIJCSQ5i7V25MrIlrMrHfLvI2MTSkvi0wzM997weEJ8QzhHNOYCAK0hsBaACKCA4pOYoFYmt2jxs5hsgXxLnIjTlJYwMk7qY3FsiCwonAi6jxyaqm_Wi-yBfaz-ZPcc6y6u_LribFyy26Htm03L2aOPC-7TF3FU-zbx1_2ciqdfPx9nV_nN3e_r2eVNXild9Dlp1NJTAEQqGOfMdW1l8FiHEICC9hoCEhtVmeDn5Gql2INx3hHXYOVU_Nj5bmL3PHDqy1WTKm5bv-ZuSKXRyqEDPAiStFI7PAyiJmnIFiP4_R9w2Q1xPaYt0RUWdSGd-pCSiFYZqbYxaEdVsUspcl1uYrPy8aVEKLc1lv_XOIrO9tbDfMXhTbLvbbxf7O7JL_ivt-87vgIvo6GU</recordid><startdate>19801201</startdate><enddate>19801201</enddate><creator>Morawski, T.</creator><creator>Drury, C. G.</creator><creator>Karwan, M. H.</creator><general>SAGE Publications</general><general>Human Factors Society of America</general><general>Human Factors and Ergonomics Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JRZRW</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T2</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7U2</scope><scope>7X8</scope></search><sort><creationdate>19801201</creationdate><title>Predicting Search Performance for Multiple Targets</title><author>Morawski, T. ; Drury, C. G. ; Karwan, M. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-25153a2d01126e1beeff83da1fddd02d5a50d12e74c7dab29f44ea079a92ef083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1980</creationdate><topic>Female</topic><topic>Humans</topic><topic>Male</topic><topic>Mathematics</topic><topic>Models, Theoretical</topic><topic>Performance prediction</topic><topic>Searches</topic><topic>Searching</topic><topic>Space life sciences</topic><topic>Vision, Ocular</topic><topic>Visual Fields</topic><topic>Visual Perception</topic><topic>Visual tasks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morawski, T.</creatorcontrib><creatorcontrib>Drury, C. G.</creatorcontrib><creatorcontrib>Karwan, M. H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 35</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Safety Science and Risk</collection><collection>MEDLINE - Academic</collection><jtitle>Human factors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morawski, T.</au><au>Drury, C. G.</au><au>Karwan, M. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting Search Performance for Multiple Targets</atitle><jtitle>Human factors</jtitle><addtitle>Hum Factors</addtitle><date>1980-12-01</date><risdate>1980</risdate><volume>22</volume><issue>6</issue><spage>707</spage><epage>718</epage><pages>707-718</pages><issn>0018-7208</issn><eissn>1547-8181</eissn><abstract>Performance in a visual search task is usually measured by the cumulative probability of locating a target, F(t), in a given time (t). Two extreme F(t) against (t) relationships have been postulated, one assuming that search is random, and the other assuming that search is systematic. However, these relationships have only been available for the situation in which each search field contains a single occurrence of a single type of target. This paper extends both search models (random and systematic) first to the case of multiple occurrences of a single fault type within a search field and second to the case of multiple fault types. For systematic search, these two cases can be combined to predict the effects of multiple occurrences of multiple fault types. The general F(t) relationships are given in each case and illustrated with a worked example.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><pmid>7228041</pmid><doi>10.1177/001872088002200606</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-7208
ispartof Human factors, 1980-12, Vol.22 (6), p.707-718
issn 0018-7208
1547-8181
language eng
recordid cdi_proquest_miscellaneous_75491901
source MEDLINE; Periodicals Index Online; SAGE Complete A-Z List
subjects Female
Humans
Male
Mathematics
Models, Theoretical
Performance prediction
Searches
Searching
Space life sciences
Vision, Ocular
Visual Fields
Visual Perception
Visual tasks
title Predicting Search Performance for Multiple Targets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T19%3A28%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20Search%20Performance%20for%20Multiple%20Targets&rft.jtitle=Human%20factors&rft.au=Morawski,%20T.&rft.date=1980-12-01&rft.volume=22&rft.issue=6&rft.spage=707&rft.epage=718&rft.pages=707-718&rft.issn=0018-7208&rft.eissn=1547-8181&rft_id=info:doi/10.1177/001872088002200606&rft_dat=%3Cproquest_cross%3E75491901%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1311847348&rft_id=info:pmid/7228041&rft_sage_id=10.1177_001872088002200606&rfr_iscdi=true