Predicting Search Performance for Multiple Targets
Performance in a visual search task is usually measured by the cumulative probability of locating a target, F(t), in a given time (t). Two extreme F(t) against (t) relationships have been postulated, one assuming that search is random, and the other assuming that search is systematic. However, these...
Gespeichert in:
Veröffentlicht in: | Human factors 1980-12, Vol.22 (6), p.707-718 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 718 |
---|---|
container_issue | 6 |
container_start_page | 707 |
container_title | Human factors |
container_volume | 22 |
creator | Morawski, T. Drury, C. G. Karwan, M. H. |
description | Performance in a visual search task is usually measured by the cumulative probability of locating a target, F(t), in a given time (t). Two extreme F(t) against (t) relationships have been postulated, one assuming that search is random, and the other assuming that search is systematic. However, these relationships have only been available for the situation in which each search field contains a single occurrence of a single type of target. This paper extends both search models (random and systematic) first to the case of multiple occurrences of a single fault type within a search field and second to the case of multiple fault types. For systematic search, these two cases can be combined to predict the effects of multiple occurrences of multiple fault types. The general F(t) relationships are given in each case and illustrated with a worked example. |
doi_str_mv | 10.1177/001872088002200606 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_75491901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_001872088002200606</sage_id><sourcerecordid>75491901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-25153a2d01126e1beeff83da1fddd02d5a50d12e74c7dab29f44ea079a92ef083</originalsourceid><addsrcrecordid>eNqFkUFr20AQhZfSkDhu_0AhICj0pmRmdle7ewymbQIJCSQ5i7V25MrIlrMrHfLvI2MTSkvi0wzM997weEJ8QzhHNOYCAK0hsBaACKCA4pOYoFYmt2jxs5hsgXxLnIjTlJYwMk7qY3FsiCwonAi6jxyaqm_Wi-yBfaz-ZPcc6y6u_LribFyy26Htm03L2aOPC-7TF3FU-zbx1_2ciqdfPx9nV_nN3e_r2eVNXild9Dlp1NJTAEQqGOfMdW1l8FiHEICC9hoCEhtVmeDn5Gql2INx3hHXYOVU_Nj5bmL3PHDqy1WTKm5bv-ZuSKXRyqEDPAiStFI7PAyiJmnIFiP4_R9w2Q1xPaYt0RUWdSGd-pCSiFYZqbYxaEdVsUspcl1uYrPy8aVEKLc1lv_XOIrO9tbDfMXhTbLvbbxf7O7JL_ivt-87vgIvo6GU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1311847348</pqid></control><display><type>article</type><title>Predicting Search Performance for Multiple Targets</title><source>MEDLINE</source><source>Periodicals Index Online</source><source>SAGE Complete A-Z List</source><creator>Morawski, T. ; Drury, C. G. ; Karwan, M. H.</creator><creatorcontrib>Morawski, T. ; Drury, C. G. ; Karwan, M. H.</creatorcontrib><description>Performance in a visual search task is usually measured by the cumulative probability of locating a target, F(t), in a given time (t). Two extreme F(t) against (t) relationships have been postulated, one assuming that search is random, and the other assuming that search is systematic. However, these relationships have only been available for the situation in which each search field contains a single occurrence of a single type of target. This paper extends both search models (random and systematic) first to the case of multiple occurrences of a single fault type within a search field and second to the case of multiple fault types. For systematic search, these two cases can be combined to predict the effects of multiple occurrences of multiple fault types. The general F(t) relationships are given in each case and illustrated with a worked example.</description><identifier>ISSN: 0018-7208</identifier><identifier>EISSN: 1547-8181</identifier><identifier>DOI: 10.1177/001872088002200606</identifier><identifier>PMID: 7228041</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Female ; Humans ; Male ; Mathematics ; Models, Theoretical ; Performance prediction ; Searches ; Searching ; Space life sciences ; Vision, Ocular ; Visual Fields ; Visual Perception ; Visual tasks</subject><ispartof>Human factors, 1980-12, Vol.22 (6), p.707-718</ispartof><rights>Copyright Human Factors and Ergonomics Society Dec 1980</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-25153a2d01126e1beeff83da1fddd02d5a50d12e74c7dab29f44ea079a92ef083</citedby><cites>FETCH-LOGICAL-c456t-25153a2d01126e1beeff83da1fddd02d5a50d12e74c7dab29f44ea079a92ef083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/001872088002200606$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/001872088002200606$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21799,27848,27903,27904,43600,43601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/7228041$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Morawski, T.</creatorcontrib><creatorcontrib>Drury, C. G.</creatorcontrib><creatorcontrib>Karwan, M. H.</creatorcontrib><title>Predicting Search Performance for Multiple Targets</title><title>Human factors</title><addtitle>Hum Factors</addtitle><description>Performance in a visual search task is usually measured by the cumulative probability of locating a target, F(t), in a given time (t). Two extreme F(t) against (t) relationships have been postulated, one assuming that search is random, and the other assuming that search is systematic. However, these relationships have only been available for the situation in which each search field contains a single occurrence of a single type of target. This paper extends both search models (random and systematic) first to the case of multiple occurrences of a single fault type within a search field and second to the case of multiple fault types. For systematic search, these two cases can be combined to predict the effects of multiple occurrences of multiple fault types. The general F(t) relationships are given in each case and illustrated with a worked example.</description><subject>Female</subject><subject>Humans</subject><subject>Male</subject><subject>Mathematics</subject><subject>Models, Theoretical</subject><subject>Performance prediction</subject><subject>Searches</subject><subject>Searching</subject><subject>Space life sciences</subject><subject>Vision, Ocular</subject><subject>Visual Fields</subject><subject>Visual Perception</subject><subject>Visual tasks</subject><issn>0018-7208</issn><issn>1547-8181</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1980</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>K30</sourceid><recordid>eNqFkUFr20AQhZfSkDhu_0AhICj0pmRmdle7ewymbQIJCSQ5i7V25MrIlrMrHfLvI2MTSkvi0wzM997weEJ8QzhHNOYCAK0hsBaACKCA4pOYoFYmt2jxs5hsgXxLnIjTlJYwMk7qY3FsiCwonAi6jxyaqm_Wi-yBfaz-ZPcc6y6u_LribFyy26Htm03L2aOPC-7TF3FU-zbx1_2ciqdfPx9nV_nN3e_r2eVNXild9Dlp1NJTAEQqGOfMdW1l8FiHEICC9hoCEhtVmeDn5Gql2INx3hHXYOVU_Nj5bmL3PHDqy1WTKm5bv-ZuSKXRyqEDPAiStFI7PAyiJmnIFiP4_R9w2Q1xPaYt0RUWdSGd-pCSiFYZqbYxaEdVsUspcl1uYrPy8aVEKLc1lv_XOIrO9tbDfMXhTbLvbbxf7O7JL_ivt-87vgIvo6GU</recordid><startdate>19801201</startdate><enddate>19801201</enddate><creator>Morawski, T.</creator><creator>Drury, C. G.</creator><creator>Karwan, M. H.</creator><general>SAGE Publications</general><general>Human Factors Society of America</general><general>Human Factors and Ergonomics Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JRZRW</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T2</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7U2</scope><scope>7X8</scope></search><sort><creationdate>19801201</creationdate><title>Predicting Search Performance for Multiple Targets</title><author>Morawski, T. ; Drury, C. G. ; Karwan, M. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-25153a2d01126e1beeff83da1fddd02d5a50d12e74c7dab29f44ea079a92ef083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1980</creationdate><topic>Female</topic><topic>Humans</topic><topic>Male</topic><topic>Mathematics</topic><topic>Models, Theoretical</topic><topic>Performance prediction</topic><topic>Searches</topic><topic>Searching</topic><topic>Space life sciences</topic><topic>Vision, Ocular</topic><topic>Visual Fields</topic><topic>Visual Perception</topic><topic>Visual tasks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morawski, T.</creatorcontrib><creatorcontrib>Drury, C. G.</creatorcontrib><creatorcontrib>Karwan, M. H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 35</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access & Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access & Build (Plan A) - APAC</collection><collection>Primary Sources Access & Build (Plan A) - Canada</collection><collection>Primary Sources Access & Build (Plan A) - West</collection><collection>Primary Sources Access & Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - Midwest</collection><collection>Primary Sources Access & Build (Plan A) - North Central</collection><collection>Primary Sources Access & Build (Plan A) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Safety Science and Risk</collection><collection>MEDLINE - Academic</collection><jtitle>Human factors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morawski, T.</au><au>Drury, C. G.</au><au>Karwan, M. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting Search Performance for Multiple Targets</atitle><jtitle>Human factors</jtitle><addtitle>Hum Factors</addtitle><date>1980-12-01</date><risdate>1980</risdate><volume>22</volume><issue>6</issue><spage>707</spage><epage>718</epage><pages>707-718</pages><issn>0018-7208</issn><eissn>1547-8181</eissn><abstract>Performance in a visual search task is usually measured by the cumulative probability of locating a target, F(t), in a given time (t). Two extreme F(t) against (t) relationships have been postulated, one assuming that search is random, and the other assuming that search is systematic. However, these relationships have only been available for the situation in which each search field contains a single occurrence of a single type of target. This paper extends both search models (random and systematic) first to the case of multiple occurrences of a single fault type within a search field and second to the case of multiple fault types. For systematic search, these two cases can be combined to predict the effects of multiple occurrences of multiple fault types. The general F(t) relationships are given in each case and illustrated with a worked example.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><pmid>7228041</pmid><doi>10.1177/001872088002200606</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-7208 |
ispartof | Human factors, 1980-12, Vol.22 (6), p.707-718 |
issn | 0018-7208 1547-8181 |
language | eng |
recordid | cdi_proquest_miscellaneous_75491901 |
source | MEDLINE; Periodicals Index Online; SAGE Complete A-Z List |
subjects | Female Humans Male Mathematics Models, Theoretical Performance prediction Searches Searching Space life sciences Vision, Ocular Visual Fields Visual Perception Visual tasks |
title | Predicting Search Performance for Multiple Targets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T19%3A28%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20Search%20Performance%20for%20Multiple%20Targets&rft.jtitle=Human%20factors&rft.au=Morawski,%20T.&rft.date=1980-12-01&rft.volume=22&rft.issue=6&rft.spage=707&rft.epage=718&rft.pages=707-718&rft.issn=0018-7208&rft.eissn=1547-8181&rft_id=info:doi/10.1177/001872088002200606&rft_dat=%3Cproquest_cross%3E75491901%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1311847348&rft_id=info:pmid/7228041&rft_sage_id=10.1177_001872088002200606&rfr_iscdi=true |