Timescale-Invariant Pattern Recognition by Feedforward Inhibition and Parallel Signal Processing

The timescale-invariant recognition of temporal stimulus sequences is vital for many species and poses a challenge for their sensory systems. Here we present a simple mechanistic model to address this computational task, based on recent observations in insects that use rhythmic acoustic communicatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computation 2010-06, Vol.22 (6), p.1493-1510
Hauptverfasser: Creutzig, Felix, Benda, Jan, Wohlgemuth, Sandra, Stumpner, Andreas, Ronacher, Bernhard, Herz, Andreas V. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1510
container_issue 6
container_start_page 1493
container_title Neural computation
container_volume 22
creator Creutzig, Felix
Benda, Jan
Wohlgemuth, Sandra
Stumpner, Andreas
Ronacher, Bernhard
Herz, Andreas V. M.
description The timescale-invariant recognition of temporal stimulus sequences is vital for many species and poses a challenge for their sensory systems. Here we present a simple mechanistic model to address this computational task, based on recent observations in insects that use rhythmic acoustic communication signals for mate finding. In the model framework, feedforward inhibition leads to burst-like response patterns in one neuron of the circuit. Integrating these responses over a fixed time window by a readout neuron creates a timescale-invariant stimulus representation. Only two additional processing channels, each with a feature detector and a readout neuron, plus one final coincidence detector for all three parallel signal streams, are needed to account for the behavioral data. In contrast to previous solutions to the general time-warp problem, no time delay lines or sophisticated neural architectures are required. Our results suggest a new computational role for feedforward inhibition and underscore the power of parallel signal processing.
doi_str_mv 10.1162/neco.2010.05-09-1016
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_754896605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733943330</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-7591a3a2336fc30543c00a3a94857d093b3f8c07dfa0ccddf333a405422ff5a93</originalsourceid><addsrcrecordid>eNqFkV1rFDEUhoNY7Fr9ByKDIF5Ne_I5k0sp1i4ULLWCd_FsJllTZjJrMlupv94Mu35QCr0KSZ7nPQkvIa8oHFOq2El0djxmULYga9A1BaqekAWVHOq2bb8-JQtota4bpZpD8jznGwBQFOQzclg0QUUjF-TbdRhctti7ehlvMQWMU3WJ0-RSrK7KiHUMUxhjtbqrzpzr_Jh-YuqqZfweVrsbjF0xEva966vPYR2xry7TaF3OIa5fkAOPfXYv9-sR-XL24fr0vL749HF5-v6ithLoVDdSU-TIOFfecpCCW4ByoEUrmw40X3HfWmg6j2Bt13nOOYrCMea9RM2PyLtd7iaNP7YuT2YI2bq-x-jGbTaNFK1WCuTjJOdalHgo5Jt75M24TeV_2TBKmaBczHFiB9k05pycN5sUBkx3hoKZmzJzU2ZuyoA0oM3cVNFe77O3q8F1f6U_1RTg7R7AuR-fMNqQ_3GsZbxltHCw44bw3_semX3-gDKjt4wFZTiw8oKiMVpSZu1X2Dwc9RtNGsGC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>211241345</pqid></control><display><type>article</type><title>Timescale-Invariant Pattern Recognition by Feedforward Inhibition and Parallel Signal Processing</title><source>MEDLINE</source><source>MIT Press Journals</source><creator>Creutzig, Felix ; Benda, Jan ; Wohlgemuth, Sandra ; Stumpner, Andreas ; Ronacher, Bernhard ; Herz, Andreas V. M.</creator><creatorcontrib>Creutzig, Felix ; Benda, Jan ; Wohlgemuth, Sandra ; Stumpner, Andreas ; Ronacher, Bernhard ; Herz, Andreas V. M.</creatorcontrib><description>The timescale-invariant recognition of temporal stimulus sequences is vital for many species and poses a challenge for their sensory systems. Here we present a simple mechanistic model to address this computational task, based on recent observations in insects that use rhythmic acoustic communication signals for mate finding. In the model framework, feedforward inhibition leads to burst-like response patterns in one neuron of the circuit. Integrating these responses over a fixed time window by a readout neuron creates a timescale-invariant stimulus representation. Only two additional processing channels, each with a feature detector and a readout neuron, plus one final coincidence detector for all three parallel signal streams, are needed to account for the behavioral data. In contrast to previous solutions to the general time-warp problem, no time delay lines or sophisticated neural architectures are required. Our results suggest a new computational role for feedforward inhibition and underscore the power of parallel signal processing.</description><identifier>ISSN: 0899-7667</identifier><identifier>EISSN: 1530-888X</identifier><identifier>DOI: 10.1162/neco.2010.05-09-1016</identifier><identifier>PMID: 20141475</identifier><identifier>CODEN: NEUCEB</identifier><language>eng</language><publisher>One Rogers Street, Cambridge, MA 02142-1209, USA: MIT Press</publisher><subject>Action Potentials - physiology ; Animal communication ; Animals ; Applied sciences ; Artificial intelligence ; Auditory Perception - physiology ; Biological and medical sciences ; Central Nervous System - physiology ; Computer science; control theory; systems ; Computer Simulation ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; Ganglia, Invertebrate - physiology ; General aspects ; Insecta - physiology ; Insects ; Learning and adaptive systems ; Letters ; Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) ; Miscellaneous ; Nerve Net - physiology ; Neural Inhibition - physiology ; Neural Networks (Computer) ; Neurons ; Neurons - physiology ; Pattern Recognition, Automated - methods ; Sensory perception ; Sexual Behavior, Animal - physiology ; Signal Processing, Computer-Assisted ; Time Factors ; Time Perception - physiology ; Vocalization, Animal - physiology</subject><ispartof>Neural computation, 2010-06, Vol.22 (6), p.1493-1510</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright MIT Press Journals Jun 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-7591a3a2336fc30543c00a3a94857d093b3f8c07dfa0ccddf333a405422ff5a93</citedby><cites>FETCH-LOGICAL-c501t-7591a3a2336fc30543c00a3a94857d093b3f8c07dfa0ccddf333a405422ff5a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://direct.mit.edu/neco/article/doi/10.1162/neco.2010.05-09-1016$$EHTML$$P50$$Gmit$$H</linktohtml><link.rule.ids>315,781,785,27926,27927,54011,54012</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22823821$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20141475$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Creutzig, Felix</creatorcontrib><creatorcontrib>Benda, Jan</creatorcontrib><creatorcontrib>Wohlgemuth, Sandra</creatorcontrib><creatorcontrib>Stumpner, Andreas</creatorcontrib><creatorcontrib>Ronacher, Bernhard</creatorcontrib><creatorcontrib>Herz, Andreas V. M.</creatorcontrib><title>Timescale-Invariant Pattern Recognition by Feedforward Inhibition and Parallel Signal Processing</title><title>Neural computation</title><addtitle>Neural Comput</addtitle><description>The timescale-invariant recognition of temporal stimulus sequences is vital for many species and poses a challenge for their sensory systems. Here we present a simple mechanistic model to address this computational task, based on recent observations in insects that use rhythmic acoustic communication signals for mate finding. In the model framework, feedforward inhibition leads to burst-like response patterns in one neuron of the circuit. Integrating these responses over a fixed time window by a readout neuron creates a timescale-invariant stimulus representation. Only two additional processing channels, each with a feature detector and a readout neuron, plus one final coincidence detector for all three parallel signal streams, are needed to account for the behavioral data. In contrast to previous solutions to the general time-warp problem, no time delay lines or sophisticated neural architectures are required. Our results suggest a new computational role for feedforward inhibition and underscore the power of parallel signal processing.</description><subject>Action Potentials - physiology</subject><subject>Animal communication</subject><subject>Animals</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Auditory Perception - physiology</subject><subject>Biological and medical sciences</subject><subject>Central Nervous System - physiology</subject><subject>Computer science; control theory; systems</subject><subject>Computer Simulation</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Ganglia, Invertebrate - physiology</subject><subject>General aspects</subject><subject>Insecta - physiology</subject><subject>Insects</subject><subject>Learning and adaptive systems</subject><subject>Letters</subject><subject>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</subject><subject>Miscellaneous</subject><subject>Nerve Net - physiology</subject><subject>Neural Inhibition - physiology</subject><subject>Neural Networks (Computer)</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Sensory perception</subject><subject>Sexual Behavior, Animal - physiology</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Time Factors</subject><subject>Time Perception - physiology</subject><subject>Vocalization, Animal - physiology</subject><issn>0899-7667</issn><issn>1530-888X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkV1rFDEUhoNY7Fr9ByKDIF5Ne_I5k0sp1i4ULLWCd_FsJllTZjJrMlupv94Mu35QCr0KSZ7nPQkvIa8oHFOq2El0djxmULYga9A1BaqekAWVHOq2bb8-JQtota4bpZpD8jznGwBQFOQzclg0QUUjF-TbdRhctti7ehlvMQWMU3WJ0-RSrK7KiHUMUxhjtbqrzpzr_Jh-YuqqZfweVrsbjF0xEva966vPYR2xry7TaF3OIa5fkAOPfXYv9-sR-XL24fr0vL749HF5-v6ithLoVDdSU-TIOFfecpCCW4ByoEUrmw40X3HfWmg6j2Bt13nOOYrCMea9RM2PyLtd7iaNP7YuT2YI2bq-x-jGbTaNFK1WCuTjJOdalHgo5Jt75M24TeV_2TBKmaBczHFiB9k05pycN5sUBkx3hoKZmzJzU2ZuyoA0oM3cVNFe77O3q8F1f6U_1RTg7R7AuR-fMNqQ_3GsZbxltHCw44bw3_semX3-gDKjt4wFZTiw8oKiMVpSZu1X2Dwc9RtNGsGC</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Creutzig, Felix</creator><creator>Benda, Jan</creator><creator>Wohlgemuth, Sandra</creator><creator>Stumpner, Andreas</creator><creator>Ronacher, Bernhard</creator><creator>Herz, Andreas V. M.</creator><general>MIT Press</general><general>MIT Press Journals, The</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>7TK</scope></search><sort><creationdate>20100601</creationdate><title>Timescale-Invariant Pattern Recognition by Feedforward Inhibition and Parallel Signal Processing</title><author>Creutzig, Felix ; Benda, Jan ; Wohlgemuth, Sandra ; Stumpner, Andreas ; Ronacher, Bernhard ; Herz, Andreas V. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-7591a3a2336fc30543c00a3a94857d093b3f8c07dfa0ccddf333a405422ff5a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Action Potentials - physiology</topic><topic>Animal communication</topic><topic>Animals</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Auditory Perception - physiology</topic><topic>Biological and medical sciences</topic><topic>Central Nervous System - physiology</topic><topic>Computer science; control theory; systems</topic><topic>Computer Simulation</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Ganglia, Invertebrate - physiology</topic><topic>General aspects</topic><topic>Insecta - physiology</topic><topic>Insects</topic><topic>Learning and adaptive systems</topic><topic>Letters</topic><topic>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</topic><topic>Miscellaneous</topic><topic>Nerve Net - physiology</topic><topic>Neural Inhibition - physiology</topic><topic>Neural Networks (Computer)</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Sensory perception</topic><topic>Sexual Behavior, Animal - physiology</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Time Factors</topic><topic>Time Perception - physiology</topic><topic>Vocalization, Animal - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Creutzig, Felix</creatorcontrib><creatorcontrib>Benda, Jan</creatorcontrib><creatorcontrib>Wohlgemuth, Sandra</creatorcontrib><creatorcontrib>Stumpner, Andreas</creatorcontrib><creatorcontrib>Ronacher, Bernhard</creatorcontrib><creatorcontrib>Herz, Andreas V. M.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><jtitle>Neural computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Creutzig, Felix</au><au>Benda, Jan</au><au>Wohlgemuth, Sandra</au><au>Stumpner, Andreas</au><au>Ronacher, Bernhard</au><au>Herz, Andreas V. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Timescale-Invariant Pattern Recognition by Feedforward Inhibition and Parallel Signal Processing</atitle><jtitle>Neural computation</jtitle><addtitle>Neural Comput</addtitle><date>2010-06-01</date><risdate>2010</risdate><volume>22</volume><issue>6</issue><spage>1493</spage><epage>1510</epage><pages>1493-1510</pages><issn>0899-7667</issn><eissn>1530-888X</eissn><coden>NEUCEB</coden><abstract>The timescale-invariant recognition of temporal stimulus sequences is vital for many species and poses a challenge for their sensory systems. Here we present a simple mechanistic model to address this computational task, based on recent observations in insects that use rhythmic acoustic communication signals for mate finding. In the model framework, feedforward inhibition leads to burst-like response patterns in one neuron of the circuit. Integrating these responses over a fixed time window by a readout neuron creates a timescale-invariant stimulus representation. Only two additional processing channels, each with a feature detector and a readout neuron, plus one final coincidence detector for all three parallel signal streams, are needed to account for the behavioral data. In contrast to previous solutions to the general time-warp problem, no time delay lines or sophisticated neural architectures are required. Our results suggest a new computational role for feedforward inhibition and underscore the power of parallel signal processing.</abstract><cop>One Rogers Street, Cambridge, MA 02142-1209, USA</cop><pub>MIT Press</pub><pmid>20141475</pmid><doi>10.1162/neco.2010.05-09-1016</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0899-7667
ispartof Neural computation, 2010-06, Vol.22 (6), p.1493-1510
issn 0899-7667
1530-888X
language eng
recordid cdi_proquest_miscellaneous_754896605
source MEDLINE; MIT Press Journals
subjects Action Potentials - physiology
Animal communication
Animals
Applied sciences
Artificial intelligence
Auditory Perception - physiology
Biological and medical sciences
Central Nervous System - physiology
Computer science
control theory
systems
Computer Simulation
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
Ganglia, Invertebrate - physiology
General aspects
Insecta - physiology
Insects
Learning and adaptive systems
Letters
Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)
Miscellaneous
Nerve Net - physiology
Neural Inhibition - physiology
Neural Networks (Computer)
Neurons
Neurons - physiology
Pattern Recognition, Automated - methods
Sensory perception
Sexual Behavior, Animal - physiology
Signal Processing, Computer-Assisted
Time Factors
Time Perception - physiology
Vocalization, Animal - physiology
title Timescale-Invariant Pattern Recognition by Feedforward Inhibition and Parallel Signal Processing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T22%3A06%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Timescale-Invariant%20Pattern%20Recognition%20by%20Feedforward%20Inhibition%20and%20Parallel%20Signal%20Processing&rft.jtitle=Neural%20computation&rft.au=Creutzig,%20Felix&rft.date=2010-06-01&rft.volume=22&rft.issue=6&rft.spage=1493&rft.epage=1510&rft.pages=1493-1510&rft.issn=0899-7667&rft.eissn=1530-888X&rft.coden=NEUCEB&rft_id=info:doi/10.1162/neco.2010.05-09-1016&rft_dat=%3Cproquest_pasca%3E733943330%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=211241345&rft_id=info:pmid/20141475&rfr_iscdi=true