Timescale-Invariant Pattern Recognition by Feedforward Inhibition and Parallel Signal Processing
The timescale-invariant recognition of temporal stimulus sequences is vital for many species and poses a challenge for their sensory systems. Here we present a simple mechanistic model to address this computational task, based on recent observations in insects that use rhythmic acoustic communicatio...
Gespeichert in:
Veröffentlicht in: | Neural computation 2010-06, Vol.22 (6), p.1493-1510 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1510 |
---|---|
container_issue | 6 |
container_start_page | 1493 |
container_title | Neural computation |
container_volume | 22 |
creator | Creutzig, Felix Benda, Jan Wohlgemuth, Sandra Stumpner, Andreas Ronacher, Bernhard Herz, Andreas V. M. |
description | The timescale-invariant recognition of temporal stimulus sequences is vital for many species and poses a challenge for their sensory systems. Here we present a simple mechanistic model to address this computational task, based on recent observations in insects that use rhythmic acoustic communication signals for mate finding. In the model framework, feedforward inhibition leads to burst-like response patterns in one neuron of the circuit. Integrating these responses over a fixed time window by a readout neuron creates a timescale-invariant stimulus representation. Only two additional processing channels, each with a feature detector and a readout neuron, plus one final coincidence detector for all three parallel signal streams, are needed to account for the behavioral data. In contrast to previous solutions to the general time-warp problem, no time delay lines or sophisticated neural architectures are required. Our results suggest a new computational role for feedforward inhibition and underscore the power of parallel signal processing. |
doi_str_mv | 10.1162/neco.2010.05-09-1016 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_754896605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733943330</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-7591a3a2336fc30543c00a3a94857d093b3f8c07dfa0ccddf333a405422ff5a93</originalsourceid><addsrcrecordid>eNqFkV1rFDEUhoNY7Fr9ByKDIF5Ne_I5k0sp1i4ULLWCd_FsJllTZjJrMlupv94Mu35QCr0KSZ7nPQkvIa8oHFOq2El0djxmULYga9A1BaqekAWVHOq2bb8-JQtota4bpZpD8jznGwBQFOQzclg0QUUjF-TbdRhctti7ehlvMQWMU3WJ0-RSrK7KiHUMUxhjtbqrzpzr_Jh-YuqqZfweVrsbjF0xEva966vPYR2xry7TaF3OIa5fkAOPfXYv9-sR-XL24fr0vL749HF5-v6ithLoVDdSU-TIOFfecpCCW4ByoEUrmw40X3HfWmg6j2Bt13nOOYrCMea9RM2PyLtd7iaNP7YuT2YI2bq-x-jGbTaNFK1WCuTjJOdalHgo5Jt75M24TeV_2TBKmaBczHFiB9k05pycN5sUBkx3hoKZmzJzU2ZuyoA0oM3cVNFe77O3q8F1f6U_1RTg7R7AuR-fMNqQ_3GsZbxltHCw44bw3_semX3-gDKjt4wFZTiw8oKiMVpSZu1X2Dwc9RtNGsGC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>211241345</pqid></control><display><type>article</type><title>Timescale-Invariant Pattern Recognition by Feedforward Inhibition and Parallel Signal Processing</title><source>MEDLINE</source><source>MIT Press Journals</source><creator>Creutzig, Felix ; Benda, Jan ; Wohlgemuth, Sandra ; Stumpner, Andreas ; Ronacher, Bernhard ; Herz, Andreas V. M.</creator><creatorcontrib>Creutzig, Felix ; Benda, Jan ; Wohlgemuth, Sandra ; Stumpner, Andreas ; Ronacher, Bernhard ; Herz, Andreas V. M.</creatorcontrib><description>The timescale-invariant recognition of temporal stimulus sequences is vital for many species and poses a challenge for their sensory systems. Here we present a simple mechanistic model to address this computational task, based on recent observations in insects that use rhythmic acoustic communication signals for mate finding. In the model framework, feedforward inhibition leads to burst-like response patterns in one neuron of the circuit. Integrating these responses over a fixed time window by a readout neuron creates a timescale-invariant stimulus representation. Only two additional processing channels, each with a feature detector and a readout neuron, plus one final coincidence detector for all three parallel signal streams, are needed to account for the behavioral data. In contrast to previous solutions to the general time-warp problem, no time delay lines or sophisticated neural architectures are required. Our results suggest a new computational role for feedforward inhibition and underscore the power of parallel signal processing.</description><identifier>ISSN: 0899-7667</identifier><identifier>EISSN: 1530-888X</identifier><identifier>DOI: 10.1162/neco.2010.05-09-1016</identifier><identifier>PMID: 20141475</identifier><identifier>CODEN: NEUCEB</identifier><language>eng</language><publisher>One Rogers Street, Cambridge, MA 02142-1209, USA: MIT Press</publisher><subject>Action Potentials - physiology ; Animal communication ; Animals ; Applied sciences ; Artificial intelligence ; Auditory Perception - physiology ; Biological and medical sciences ; Central Nervous System - physiology ; Computer science; control theory; systems ; Computer Simulation ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; Ganglia, Invertebrate - physiology ; General aspects ; Insecta - physiology ; Insects ; Learning and adaptive systems ; Letters ; Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) ; Miscellaneous ; Nerve Net - physiology ; Neural Inhibition - physiology ; Neural Networks (Computer) ; Neurons ; Neurons - physiology ; Pattern Recognition, Automated - methods ; Sensory perception ; Sexual Behavior, Animal - physiology ; Signal Processing, Computer-Assisted ; Time Factors ; Time Perception - physiology ; Vocalization, Animal - physiology</subject><ispartof>Neural computation, 2010-06, Vol.22 (6), p.1493-1510</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright MIT Press Journals Jun 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-7591a3a2336fc30543c00a3a94857d093b3f8c07dfa0ccddf333a405422ff5a93</citedby><cites>FETCH-LOGICAL-c501t-7591a3a2336fc30543c00a3a94857d093b3f8c07dfa0ccddf333a405422ff5a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://direct.mit.edu/neco/article/doi/10.1162/neco.2010.05-09-1016$$EHTML$$P50$$Gmit$$H</linktohtml><link.rule.ids>315,781,785,27926,27927,54011,54012</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22823821$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20141475$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Creutzig, Felix</creatorcontrib><creatorcontrib>Benda, Jan</creatorcontrib><creatorcontrib>Wohlgemuth, Sandra</creatorcontrib><creatorcontrib>Stumpner, Andreas</creatorcontrib><creatorcontrib>Ronacher, Bernhard</creatorcontrib><creatorcontrib>Herz, Andreas V. M.</creatorcontrib><title>Timescale-Invariant Pattern Recognition by Feedforward Inhibition and Parallel Signal Processing</title><title>Neural computation</title><addtitle>Neural Comput</addtitle><description>The timescale-invariant recognition of temporal stimulus sequences is vital for many species and poses a challenge for their sensory systems. Here we present a simple mechanistic model to address this computational task, based on recent observations in insects that use rhythmic acoustic communication signals for mate finding. In the model framework, feedforward inhibition leads to burst-like response patterns in one neuron of the circuit. Integrating these responses over a fixed time window by a readout neuron creates a timescale-invariant stimulus representation. Only two additional processing channels, each with a feature detector and a readout neuron, plus one final coincidence detector for all three parallel signal streams, are needed to account for the behavioral data. In contrast to previous solutions to the general time-warp problem, no time delay lines or sophisticated neural architectures are required. Our results suggest a new computational role for feedforward inhibition and underscore the power of parallel signal processing.</description><subject>Action Potentials - physiology</subject><subject>Animal communication</subject><subject>Animals</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Auditory Perception - physiology</subject><subject>Biological and medical sciences</subject><subject>Central Nervous System - physiology</subject><subject>Computer science; control theory; systems</subject><subject>Computer Simulation</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Ganglia, Invertebrate - physiology</subject><subject>General aspects</subject><subject>Insecta - physiology</subject><subject>Insects</subject><subject>Learning and adaptive systems</subject><subject>Letters</subject><subject>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</subject><subject>Miscellaneous</subject><subject>Nerve Net - physiology</subject><subject>Neural Inhibition - physiology</subject><subject>Neural Networks (Computer)</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Sensory perception</subject><subject>Sexual Behavior, Animal - physiology</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Time Factors</subject><subject>Time Perception - physiology</subject><subject>Vocalization, Animal - physiology</subject><issn>0899-7667</issn><issn>1530-888X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkV1rFDEUhoNY7Fr9ByKDIF5Ne_I5k0sp1i4ULLWCd_FsJllTZjJrMlupv94Mu35QCr0KSZ7nPQkvIa8oHFOq2El0djxmULYga9A1BaqekAWVHOq2bb8-JQtota4bpZpD8jznGwBQFOQzclg0QUUjF-TbdRhctti7ehlvMQWMU3WJ0-RSrK7KiHUMUxhjtbqrzpzr_Jh-YuqqZfweVrsbjF0xEva966vPYR2xry7TaF3OIa5fkAOPfXYv9-sR-XL24fr0vL749HF5-v6ithLoVDdSU-TIOFfecpCCW4ByoEUrmw40X3HfWmg6j2Bt13nOOYrCMea9RM2PyLtd7iaNP7YuT2YI2bq-x-jGbTaNFK1WCuTjJOdalHgo5Jt75M24TeV_2TBKmaBczHFiB9k05pycN5sUBkx3hoKZmzJzU2ZuyoA0oM3cVNFe77O3q8F1f6U_1RTg7R7AuR-fMNqQ_3GsZbxltHCw44bw3_semX3-gDKjt4wFZTiw8oKiMVpSZu1X2Dwc9RtNGsGC</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Creutzig, Felix</creator><creator>Benda, Jan</creator><creator>Wohlgemuth, Sandra</creator><creator>Stumpner, Andreas</creator><creator>Ronacher, Bernhard</creator><creator>Herz, Andreas V. M.</creator><general>MIT Press</general><general>MIT Press Journals, The</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>7TK</scope></search><sort><creationdate>20100601</creationdate><title>Timescale-Invariant Pattern Recognition by Feedforward Inhibition and Parallel Signal Processing</title><author>Creutzig, Felix ; Benda, Jan ; Wohlgemuth, Sandra ; Stumpner, Andreas ; Ronacher, Bernhard ; Herz, Andreas V. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-7591a3a2336fc30543c00a3a94857d093b3f8c07dfa0ccddf333a405422ff5a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Action Potentials - physiology</topic><topic>Animal communication</topic><topic>Animals</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Auditory Perception - physiology</topic><topic>Biological and medical sciences</topic><topic>Central Nervous System - physiology</topic><topic>Computer science; control theory; systems</topic><topic>Computer Simulation</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Ganglia, Invertebrate - physiology</topic><topic>General aspects</topic><topic>Insecta - physiology</topic><topic>Insects</topic><topic>Learning and adaptive systems</topic><topic>Letters</topic><topic>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</topic><topic>Miscellaneous</topic><topic>Nerve Net - physiology</topic><topic>Neural Inhibition - physiology</topic><topic>Neural Networks (Computer)</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Sensory perception</topic><topic>Sexual Behavior, Animal - physiology</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Time Factors</topic><topic>Time Perception - physiology</topic><topic>Vocalization, Animal - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Creutzig, Felix</creatorcontrib><creatorcontrib>Benda, Jan</creatorcontrib><creatorcontrib>Wohlgemuth, Sandra</creatorcontrib><creatorcontrib>Stumpner, Andreas</creatorcontrib><creatorcontrib>Ronacher, Bernhard</creatorcontrib><creatorcontrib>Herz, Andreas V. M.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><jtitle>Neural computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Creutzig, Felix</au><au>Benda, Jan</au><au>Wohlgemuth, Sandra</au><au>Stumpner, Andreas</au><au>Ronacher, Bernhard</au><au>Herz, Andreas V. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Timescale-Invariant Pattern Recognition by Feedforward Inhibition and Parallel Signal Processing</atitle><jtitle>Neural computation</jtitle><addtitle>Neural Comput</addtitle><date>2010-06-01</date><risdate>2010</risdate><volume>22</volume><issue>6</issue><spage>1493</spage><epage>1510</epage><pages>1493-1510</pages><issn>0899-7667</issn><eissn>1530-888X</eissn><coden>NEUCEB</coden><abstract>The timescale-invariant recognition of temporal stimulus sequences is vital for many species and poses a challenge for their sensory systems. Here we present a simple mechanistic model to address this computational task, based on recent observations in insects that use rhythmic acoustic communication signals for mate finding. In the model framework, feedforward inhibition leads to burst-like response patterns in one neuron of the circuit. Integrating these responses over a fixed time window by a readout neuron creates a timescale-invariant stimulus representation. Only two additional processing channels, each with a feature detector and a readout neuron, plus one final coincidence detector for all three parallel signal streams, are needed to account for the behavioral data. In contrast to previous solutions to the general time-warp problem, no time delay lines or sophisticated neural architectures are required. Our results suggest a new computational role for feedforward inhibition and underscore the power of parallel signal processing.</abstract><cop>One Rogers Street, Cambridge, MA 02142-1209, USA</cop><pub>MIT Press</pub><pmid>20141475</pmid><doi>10.1162/neco.2010.05-09-1016</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0899-7667 |
ispartof | Neural computation, 2010-06, Vol.22 (6), p.1493-1510 |
issn | 0899-7667 1530-888X |
language | eng |
recordid | cdi_proquest_miscellaneous_754896605 |
source | MEDLINE; MIT Press Journals |
subjects | Action Potentials - physiology Animal communication Animals Applied sciences Artificial intelligence Auditory Perception - physiology Biological and medical sciences Central Nervous System - physiology Computer science control theory systems Computer Simulation Exact sciences and technology Fundamental and applied biological sciences. Psychology Ganglia, Invertebrate - physiology General aspects Insecta - physiology Insects Learning and adaptive systems Letters Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) Miscellaneous Nerve Net - physiology Neural Inhibition - physiology Neural Networks (Computer) Neurons Neurons - physiology Pattern Recognition, Automated - methods Sensory perception Sexual Behavior, Animal - physiology Signal Processing, Computer-Assisted Time Factors Time Perception - physiology Vocalization, Animal - physiology |
title | Timescale-Invariant Pattern Recognition by Feedforward Inhibition and Parallel Signal Processing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T22%3A06%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Timescale-Invariant%20Pattern%20Recognition%20by%20Feedforward%20Inhibition%20and%20Parallel%20Signal%20Processing&rft.jtitle=Neural%20computation&rft.au=Creutzig,%20Felix&rft.date=2010-06-01&rft.volume=22&rft.issue=6&rft.spage=1493&rft.epage=1510&rft.pages=1493-1510&rft.issn=0899-7667&rft.eissn=1530-888X&rft.coden=NEUCEB&rft_id=info:doi/10.1162/neco.2010.05-09-1016&rft_dat=%3Cproquest_pasca%3E733943330%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=211241345&rft_id=info:pmid/20141475&rfr_iscdi=true |