Joint Identification of Multiple Genetic Variants via Elastic‐Net Variable Selection in a Genome‐Wide Association Analysis
Summary Unraveling the genetic background of common complex traits is a major goal in modern genetics. In recent years, genome‐wide association (GWA) studies have been conducted with large‐scale data sets of genetic variants. Most of those studies have relied on single‐marker approaches that identif...
Gespeichert in:
Veröffentlicht in: | Annals of human genetics 2010-09, Vol.74 (5), p.416-428 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 428 |
---|---|
container_issue | 5 |
container_start_page | 416 |
container_title | Annals of human genetics |
container_volume | 74 |
creator | Cho, Seoae Kim, Kyunga Kim, Young Jin Lee, Jong‐Keuk Cho, Yoon Shin Lee, Jong‐Young Han, Bok‐Ghee Kim, Heebal Ott, Jurg Park, Taesung |
description | Summary
Unraveling the genetic background of common complex traits is a major goal in modern genetics. In recent years, genome‐wide association (GWA) studies have been conducted with large‐scale data sets of genetic variants. Most of those studies have relied on single‐marker approaches that identify single genetic factors individually and can be limited in considering fully the joint effects of multiple genetic factors on complex traits. Joint identification of multiple genetic factors would be more powerful and would provide better prediction on complex traits since it utilizes combined information across variants. Here we propose a multi‐stage approach for GWA analysis: (1) prescreening, (2) joint identification of putative SNPs based on elastic‐net variable selection, and (3) empirical replication using bootstrap samples. Our approach enables an efficient joint search for genetic associations in GWA analysis. The suggested empirical replication method can be beneficial in GWA studies because one can avoid a costly, independent replication study while eliminating false‐positive associations and focusing on a smaller number of replicable variants. We applied the proposed approach to a GWA analysis, and jointly identified 129 genetic variants having an association with adult height in a Korean population. |
doi_str_mv | 10.1111/j.1469-1809.2010.00597.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_754895572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>754895572</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5047-115ecba3ec447dd008d342cbc0a2eaace315f535512d4648f4db793271d377933</originalsourceid><addsrcrecordid>eNqNkc1O3DAQx60KVBbaV6h86ynL-GuTSL2sECxUFA7042g59kTyypsscRZ2L6iP0GfkSXAIcC2-eDTzm_8cfoRQBlOW3vFyyuSszFgB5ZRD6gKoMp9uP5DJ22CPTABAZLIAOCCHMS4BGC-k-EgOOMwkT8yEPHxvfdPTC4dN72tvTe_bhrY1_bEJvV8HpAtssPeW_jadN00f6Z039DSYmJqPf_9dYT-OqsTeYED7nOAbaobVdoUJ-uMd0nmMrfXjgXljwi76-Ins1yZE_PzyH5FfZ6c_T86zy-vFxcn8MrMKZJ4xptBWRqCVMncOoHBCcltZMByNsSiYqpVQinEnZ7KopavyUvCcOZGnQhyRr2PuumtvNxh7vfLRYgimwXYTda5kUSqV8_-TI8iKRBYjabs2xg5rve78ynQ7zUAPmvRSDzb0YEMPmvSzJr1Nq19ejmyqFbq3xVcvCfg2Avc-4O7dwXp-vkiFeAKh26NB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>748955718</pqid></control><display><type>article</type><title>Joint Identification of Multiple Genetic Variants via Elastic‐Net Variable Selection in a Genome‐Wide Association Analysis</title><source>Wiley Free Content</source><source>MEDLINE</source><source>IngentaConnect Free/Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Cho, Seoae ; Kim, Kyunga ; Kim, Young Jin ; Lee, Jong‐Keuk ; Cho, Yoon Shin ; Lee, Jong‐Young ; Han, Bok‐Ghee ; Kim, Heebal ; Ott, Jurg ; Park, Taesung</creator><creatorcontrib>Cho, Seoae ; Kim, Kyunga ; Kim, Young Jin ; Lee, Jong‐Keuk ; Cho, Yoon Shin ; Lee, Jong‐Young ; Han, Bok‐Ghee ; Kim, Heebal ; Ott, Jurg ; Park, Taesung</creatorcontrib><description>Summary
Unraveling the genetic background of common complex traits is a major goal in modern genetics. In recent years, genome‐wide association (GWA) studies have been conducted with large‐scale data sets of genetic variants. Most of those studies have relied on single‐marker approaches that identify single genetic factors individually and can be limited in considering fully the joint effects of multiple genetic factors on complex traits. Joint identification of multiple genetic factors would be more powerful and would provide better prediction on complex traits since it utilizes combined information across variants. Here we propose a multi‐stage approach for GWA analysis: (1) prescreening, (2) joint identification of putative SNPs based on elastic‐net variable selection, and (3) empirical replication using bootstrap samples. Our approach enables an efficient joint search for genetic associations in GWA analysis. The suggested empirical replication method can be beneficial in GWA studies because one can avoid a costly, independent replication study while eliminating false‐positive associations and focusing on a smaller number of replicable variants. We applied the proposed approach to a GWA analysis, and jointly identified 129 genetic variants having an association with adult height in a Korean population.</description><identifier>ISSN: 0003-4800</identifier><identifier>EISSN: 1469-1809</identifier><identifier>DOI: 10.1111/j.1469-1809.2010.00597.x</identifier><identifier>PMID: 20642809</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Adult ; adult height ; Asian Continental Ancestry Group - genetics ; Body Height - genetics ; elastic‐net variable selection ; empirical replication ; Genome-Wide Association Study ; Genome‐wide association ; Humans ; multiple regression ; Polymorphism, Single Nucleotide</subject><ispartof>Annals of human genetics, 2010-09, Vol.74 (5), p.416-428</ispartof><rights>2010 The Authors Annals of Human Genetics © 2010 Blackwell Publishing Ltd/University College London</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5047-115ecba3ec447dd008d342cbc0a2eaace315f535512d4648f4db793271d377933</citedby><cites>FETCH-LOGICAL-c5047-115ecba3ec447dd008d342cbc0a2eaace315f535512d4648f4db793271d377933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1469-1809.2010.00597.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1469-1809.2010.00597.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20642809$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cho, Seoae</creatorcontrib><creatorcontrib>Kim, Kyunga</creatorcontrib><creatorcontrib>Kim, Young Jin</creatorcontrib><creatorcontrib>Lee, Jong‐Keuk</creatorcontrib><creatorcontrib>Cho, Yoon Shin</creatorcontrib><creatorcontrib>Lee, Jong‐Young</creatorcontrib><creatorcontrib>Han, Bok‐Ghee</creatorcontrib><creatorcontrib>Kim, Heebal</creatorcontrib><creatorcontrib>Ott, Jurg</creatorcontrib><creatorcontrib>Park, Taesung</creatorcontrib><title>Joint Identification of Multiple Genetic Variants via Elastic‐Net Variable Selection in a Genome‐Wide Association Analysis</title><title>Annals of human genetics</title><addtitle>Ann Hum Genet</addtitle><description>Summary
Unraveling the genetic background of common complex traits is a major goal in modern genetics. In recent years, genome‐wide association (GWA) studies have been conducted with large‐scale data sets of genetic variants. Most of those studies have relied on single‐marker approaches that identify single genetic factors individually and can be limited in considering fully the joint effects of multiple genetic factors on complex traits. Joint identification of multiple genetic factors would be more powerful and would provide better prediction on complex traits since it utilizes combined information across variants. Here we propose a multi‐stage approach for GWA analysis: (1) prescreening, (2) joint identification of putative SNPs based on elastic‐net variable selection, and (3) empirical replication using bootstrap samples. Our approach enables an efficient joint search for genetic associations in GWA analysis. The suggested empirical replication method can be beneficial in GWA studies because one can avoid a costly, independent replication study while eliminating false‐positive associations and focusing on a smaller number of replicable variants. We applied the proposed approach to a GWA analysis, and jointly identified 129 genetic variants having an association with adult height in a Korean population.</description><subject>Adult</subject><subject>adult height</subject><subject>Asian Continental Ancestry Group - genetics</subject><subject>Body Height - genetics</subject><subject>elastic‐net variable selection</subject><subject>empirical replication</subject><subject>Genome-Wide Association Study</subject><subject>Genome‐wide association</subject><subject>Humans</subject><subject>multiple regression</subject><subject>Polymorphism, Single Nucleotide</subject><issn>0003-4800</issn><issn>1469-1809</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1O3DAQx60KVBbaV6h86ynL-GuTSL2sECxUFA7042g59kTyypsscRZ2L6iP0GfkSXAIcC2-eDTzm_8cfoRQBlOW3vFyyuSszFgB5ZRD6gKoMp9uP5DJ22CPTABAZLIAOCCHMS4BGC-k-EgOOMwkT8yEPHxvfdPTC4dN72tvTe_bhrY1_bEJvV8HpAtssPeW_jadN00f6Z039DSYmJqPf_9dYT-OqsTeYED7nOAbaobVdoUJ-uMd0nmMrfXjgXljwi76-Ins1yZE_PzyH5FfZ6c_T86zy-vFxcn8MrMKZJ4xptBWRqCVMncOoHBCcltZMByNsSiYqpVQinEnZ7KopavyUvCcOZGnQhyRr2PuumtvNxh7vfLRYgimwXYTda5kUSqV8_-TI8iKRBYjabs2xg5rve78ynQ7zUAPmvRSDzb0YEMPmvSzJr1Nq19ejmyqFbq3xVcvCfg2Avc-4O7dwXp-vkiFeAKh26NB</recordid><startdate>201009</startdate><enddate>201009</enddate><creator>Cho, Seoae</creator><creator>Kim, Kyunga</creator><creator>Kim, Young Jin</creator><creator>Lee, Jong‐Keuk</creator><creator>Cho, Yoon Shin</creator><creator>Lee, Jong‐Young</creator><creator>Han, Bok‐Ghee</creator><creator>Kim, Heebal</creator><creator>Ott, Jurg</creator><creator>Park, Taesung</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>201009</creationdate><title>Joint Identification of Multiple Genetic Variants via Elastic‐Net Variable Selection in a Genome‐Wide Association Analysis</title><author>Cho, Seoae ; Kim, Kyunga ; Kim, Young Jin ; Lee, Jong‐Keuk ; Cho, Yoon Shin ; Lee, Jong‐Young ; Han, Bok‐Ghee ; Kim, Heebal ; Ott, Jurg ; Park, Taesung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5047-115ecba3ec447dd008d342cbc0a2eaace315f535512d4648f4db793271d377933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adult</topic><topic>adult height</topic><topic>Asian Continental Ancestry Group - genetics</topic><topic>Body Height - genetics</topic><topic>elastic‐net variable selection</topic><topic>empirical replication</topic><topic>Genome-Wide Association Study</topic><topic>Genome‐wide association</topic><topic>Humans</topic><topic>multiple regression</topic><topic>Polymorphism, Single Nucleotide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cho, Seoae</creatorcontrib><creatorcontrib>Kim, Kyunga</creatorcontrib><creatorcontrib>Kim, Young Jin</creatorcontrib><creatorcontrib>Lee, Jong‐Keuk</creatorcontrib><creatorcontrib>Cho, Yoon Shin</creatorcontrib><creatorcontrib>Lee, Jong‐Young</creatorcontrib><creatorcontrib>Han, Bok‐Ghee</creatorcontrib><creatorcontrib>Kim, Heebal</creatorcontrib><creatorcontrib>Ott, Jurg</creatorcontrib><creatorcontrib>Park, Taesung</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Annals of human genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cho, Seoae</au><au>Kim, Kyunga</au><au>Kim, Young Jin</au><au>Lee, Jong‐Keuk</au><au>Cho, Yoon Shin</au><au>Lee, Jong‐Young</au><au>Han, Bok‐Ghee</au><au>Kim, Heebal</au><au>Ott, Jurg</au><au>Park, Taesung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint Identification of Multiple Genetic Variants via Elastic‐Net Variable Selection in a Genome‐Wide Association Analysis</atitle><jtitle>Annals of human genetics</jtitle><addtitle>Ann Hum Genet</addtitle><date>2010-09</date><risdate>2010</risdate><volume>74</volume><issue>5</issue><spage>416</spage><epage>428</epage><pages>416-428</pages><issn>0003-4800</issn><eissn>1469-1809</eissn><abstract>Summary
Unraveling the genetic background of common complex traits is a major goal in modern genetics. In recent years, genome‐wide association (GWA) studies have been conducted with large‐scale data sets of genetic variants. Most of those studies have relied on single‐marker approaches that identify single genetic factors individually and can be limited in considering fully the joint effects of multiple genetic factors on complex traits. Joint identification of multiple genetic factors would be more powerful and would provide better prediction on complex traits since it utilizes combined information across variants. Here we propose a multi‐stage approach for GWA analysis: (1) prescreening, (2) joint identification of putative SNPs based on elastic‐net variable selection, and (3) empirical replication using bootstrap samples. Our approach enables an efficient joint search for genetic associations in GWA analysis. The suggested empirical replication method can be beneficial in GWA studies because one can avoid a costly, independent replication study while eliminating false‐positive associations and focusing on a smaller number of replicable variants. We applied the proposed approach to a GWA analysis, and jointly identified 129 genetic variants having an association with adult height in a Korean population.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>20642809</pmid><doi>10.1111/j.1469-1809.2010.00597.x</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-4800 |
ispartof | Annals of human genetics, 2010-09, Vol.74 (5), p.416-428 |
issn | 0003-4800 1469-1809 |
language | eng |
recordid | cdi_proquest_miscellaneous_754895572 |
source | Wiley Free Content; MEDLINE; IngentaConnect Free/Open Access Journals; Wiley Online Library Journals Frontfile Complete |
subjects | Adult adult height Asian Continental Ancestry Group - genetics Body Height - genetics elastic‐net variable selection empirical replication Genome-Wide Association Study Genome‐wide association Humans multiple regression Polymorphism, Single Nucleotide |
title | Joint Identification of Multiple Genetic Variants via Elastic‐Net Variable Selection in a Genome‐Wide Association Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T07%3A55%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20Identification%20of%20Multiple%20Genetic%20Variants%20via%20Elastic%E2%80%90Net%20Variable%20Selection%20in%20a%20Genome%E2%80%90Wide%20Association%20Analysis&rft.jtitle=Annals%20of%20human%20genetics&rft.au=Cho,%20Seoae&rft.date=2010-09&rft.volume=74&rft.issue=5&rft.spage=416&rft.epage=428&rft.pages=416-428&rft.issn=0003-4800&rft.eissn=1469-1809&rft_id=info:doi/10.1111/j.1469-1809.2010.00597.x&rft_dat=%3Cproquest_cross%3E754895572%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=748955718&rft_id=info:pmid/20642809&rfr_iscdi=true |