Joint Identification of Multiple Genetic Variants via Elastic‐Net Variable Selection in a Genome‐Wide Association Analysis

Summary Unraveling the genetic background of common complex traits is a major goal in modern genetics. In recent years, genome‐wide association (GWA) studies have been conducted with large‐scale data sets of genetic variants. Most of those studies have relied on single‐marker approaches that identif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of human genetics 2010-09, Vol.74 (5), p.416-428
Hauptverfasser: Cho, Seoae, Kim, Kyunga, Kim, Young Jin, Lee, Jong‐Keuk, Cho, Yoon Shin, Lee, Jong‐Young, Han, Bok‐Ghee, Kim, Heebal, Ott, Jurg, Park, Taesung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 428
container_issue 5
container_start_page 416
container_title Annals of human genetics
container_volume 74
creator Cho, Seoae
Kim, Kyunga
Kim, Young Jin
Lee, Jong‐Keuk
Cho, Yoon Shin
Lee, Jong‐Young
Han, Bok‐Ghee
Kim, Heebal
Ott, Jurg
Park, Taesung
description Summary Unraveling the genetic background of common complex traits is a major goal in modern genetics. In recent years, genome‐wide association (GWA) studies have been conducted with large‐scale data sets of genetic variants. Most of those studies have relied on single‐marker approaches that identify single genetic factors individually and can be limited in considering fully the joint effects of multiple genetic factors on complex traits. Joint identification of multiple genetic factors would be more powerful and would provide better prediction on complex traits since it utilizes combined information across variants. Here we propose a multi‐stage approach for GWA analysis: (1) prescreening, (2) joint identification of putative SNPs based on elastic‐net variable selection, and (3) empirical replication using bootstrap samples. Our approach enables an efficient joint search for genetic associations in GWA analysis. The suggested empirical replication method can be beneficial in GWA studies because one can avoid a costly, independent replication study while eliminating false‐positive associations and focusing on a smaller number of replicable variants. We applied the proposed approach to a GWA analysis, and jointly identified 129 genetic variants having an association with adult height in a Korean population.
doi_str_mv 10.1111/j.1469-1809.2010.00597.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_754895572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>754895572</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5047-115ecba3ec447dd008d342cbc0a2eaace315f535512d4648f4db793271d377933</originalsourceid><addsrcrecordid>eNqNkc1O3DAQx60KVBbaV6h86ynL-GuTSL2sECxUFA7042g59kTyypsscRZ2L6iP0GfkSXAIcC2-eDTzm_8cfoRQBlOW3vFyyuSszFgB5ZRD6gKoMp9uP5DJ22CPTABAZLIAOCCHMS4BGC-k-EgOOMwkT8yEPHxvfdPTC4dN72tvTe_bhrY1_bEJvV8HpAtssPeW_jadN00f6Z039DSYmJqPf_9dYT-OqsTeYED7nOAbaobVdoUJ-uMd0nmMrfXjgXljwi76-Ins1yZE_PzyH5FfZ6c_T86zy-vFxcn8MrMKZJ4xptBWRqCVMncOoHBCcltZMByNsSiYqpVQinEnZ7KopavyUvCcOZGnQhyRr2PuumtvNxh7vfLRYgimwXYTda5kUSqV8_-TI8iKRBYjabs2xg5rve78ynQ7zUAPmvRSDzb0YEMPmvSzJr1Nq19ejmyqFbq3xVcvCfg2Avc-4O7dwXp-vkiFeAKh26NB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>748955718</pqid></control><display><type>article</type><title>Joint Identification of Multiple Genetic Variants via Elastic‐Net Variable Selection in a Genome‐Wide Association Analysis</title><source>Wiley Free Content</source><source>MEDLINE</source><source>IngentaConnect Free/Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Cho, Seoae ; Kim, Kyunga ; Kim, Young Jin ; Lee, Jong‐Keuk ; Cho, Yoon Shin ; Lee, Jong‐Young ; Han, Bok‐Ghee ; Kim, Heebal ; Ott, Jurg ; Park, Taesung</creator><creatorcontrib>Cho, Seoae ; Kim, Kyunga ; Kim, Young Jin ; Lee, Jong‐Keuk ; Cho, Yoon Shin ; Lee, Jong‐Young ; Han, Bok‐Ghee ; Kim, Heebal ; Ott, Jurg ; Park, Taesung</creatorcontrib><description>Summary Unraveling the genetic background of common complex traits is a major goal in modern genetics. In recent years, genome‐wide association (GWA) studies have been conducted with large‐scale data sets of genetic variants. Most of those studies have relied on single‐marker approaches that identify single genetic factors individually and can be limited in considering fully the joint effects of multiple genetic factors on complex traits. Joint identification of multiple genetic factors would be more powerful and would provide better prediction on complex traits since it utilizes combined information across variants. Here we propose a multi‐stage approach for GWA analysis: (1) prescreening, (2) joint identification of putative SNPs based on elastic‐net variable selection, and (3) empirical replication using bootstrap samples. Our approach enables an efficient joint search for genetic associations in GWA analysis. The suggested empirical replication method can be beneficial in GWA studies because one can avoid a costly, independent replication study while eliminating false‐positive associations and focusing on a smaller number of replicable variants. We applied the proposed approach to a GWA analysis, and jointly identified 129 genetic variants having an association with adult height in a Korean population.</description><identifier>ISSN: 0003-4800</identifier><identifier>EISSN: 1469-1809</identifier><identifier>DOI: 10.1111/j.1469-1809.2010.00597.x</identifier><identifier>PMID: 20642809</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Adult ; adult height ; Asian Continental Ancestry Group - genetics ; Body Height - genetics ; elastic‐net variable selection ; empirical replication ; Genome-Wide Association Study ; Genome‐wide association ; Humans ; multiple regression ; Polymorphism, Single Nucleotide</subject><ispartof>Annals of human genetics, 2010-09, Vol.74 (5), p.416-428</ispartof><rights>2010 The Authors Annals of Human Genetics © 2010 Blackwell Publishing Ltd/University College London</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5047-115ecba3ec447dd008d342cbc0a2eaace315f535512d4648f4db793271d377933</citedby><cites>FETCH-LOGICAL-c5047-115ecba3ec447dd008d342cbc0a2eaace315f535512d4648f4db793271d377933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1469-1809.2010.00597.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1469-1809.2010.00597.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20642809$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cho, Seoae</creatorcontrib><creatorcontrib>Kim, Kyunga</creatorcontrib><creatorcontrib>Kim, Young Jin</creatorcontrib><creatorcontrib>Lee, Jong‐Keuk</creatorcontrib><creatorcontrib>Cho, Yoon Shin</creatorcontrib><creatorcontrib>Lee, Jong‐Young</creatorcontrib><creatorcontrib>Han, Bok‐Ghee</creatorcontrib><creatorcontrib>Kim, Heebal</creatorcontrib><creatorcontrib>Ott, Jurg</creatorcontrib><creatorcontrib>Park, Taesung</creatorcontrib><title>Joint Identification of Multiple Genetic Variants via Elastic‐Net Variable Selection in a Genome‐Wide Association Analysis</title><title>Annals of human genetics</title><addtitle>Ann Hum Genet</addtitle><description>Summary Unraveling the genetic background of common complex traits is a major goal in modern genetics. In recent years, genome‐wide association (GWA) studies have been conducted with large‐scale data sets of genetic variants. Most of those studies have relied on single‐marker approaches that identify single genetic factors individually and can be limited in considering fully the joint effects of multiple genetic factors on complex traits. Joint identification of multiple genetic factors would be more powerful and would provide better prediction on complex traits since it utilizes combined information across variants. Here we propose a multi‐stage approach for GWA analysis: (1) prescreening, (2) joint identification of putative SNPs based on elastic‐net variable selection, and (3) empirical replication using bootstrap samples. Our approach enables an efficient joint search for genetic associations in GWA analysis. The suggested empirical replication method can be beneficial in GWA studies because one can avoid a costly, independent replication study while eliminating false‐positive associations and focusing on a smaller number of replicable variants. We applied the proposed approach to a GWA analysis, and jointly identified 129 genetic variants having an association with adult height in a Korean population.</description><subject>Adult</subject><subject>adult height</subject><subject>Asian Continental Ancestry Group - genetics</subject><subject>Body Height - genetics</subject><subject>elastic‐net variable selection</subject><subject>empirical replication</subject><subject>Genome-Wide Association Study</subject><subject>Genome‐wide association</subject><subject>Humans</subject><subject>multiple regression</subject><subject>Polymorphism, Single Nucleotide</subject><issn>0003-4800</issn><issn>1469-1809</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1O3DAQx60KVBbaV6h86ynL-GuTSL2sECxUFA7042g59kTyypsscRZ2L6iP0GfkSXAIcC2-eDTzm_8cfoRQBlOW3vFyyuSszFgB5ZRD6gKoMp9uP5DJ22CPTABAZLIAOCCHMS4BGC-k-EgOOMwkT8yEPHxvfdPTC4dN72tvTe_bhrY1_bEJvV8HpAtssPeW_jadN00f6Z039DSYmJqPf_9dYT-OqsTeYED7nOAbaobVdoUJ-uMd0nmMrfXjgXljwi76-Ins1yZE_PzyH5FfZ6c_T86zy-vFxcn8MrMKZJ4xptBWRqCVMncOoHBCcltZMByNsSiYqpVQinEnZ7KopavyUvCcOZGnQhyRr2PuumtvNxh7vfLRYgimwXYTda5kUSqV8_-TI8iKRBYjabs2xg5rve78ynQ7zUAPmvRSDzb0YEMPmvSzJr1Nq19ejmyqFbq3xVcvCfg2Avc-4O7dwXp-vkiFeAKh26NB</recordid><startdate>201009</startdate><enddate>201009</enddate><creator>Cho, Seoae</creator><creator>Kim, Kyunga</creator><creator>Kim, Young Jin</creator><creator>Lee, Jong‐Keuk</creator><creator>Cho, Yoon Shin</creator><creator>Lee, Jong‐Young</creator><creator>Han, Bok‐Ghee</creator><creator>Kim, Heebal</creator><creator>Ott, Jurg</creator><creator>Park, Taesung</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>201009</creationdate><title>Joint Identification of Multiple Genetic Variants via Elastic‐Net Variable Selection in a Genome‐Wide Association Analysis</title><author>Cho, Seoae ; Kim, Kyunga ; Kim, Young Jin ; Lee, Jong‐Keuk ; Cho, Yoon Shin ; Lee, Jong‐Young ; Han, Bok‐Ghee ; Kim, Heebal ; Ott, Jurg ; Park, Taesung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5047-115ecba3ec447dd008d342cbc0a2eaace315f535512d4648f4db793271d377933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adult</topic><topic>adult height</topic><topic>Asian Continental Ancestry Group - genetics</topic><topic>Body Height - genetics</topic><topic>elastic‐net variable selection</topic><topic>empirical replication</topic><topic>Genome-Wide Association Study</topic><topic>Genome‐wide association</topic><topic>Humans</topic><topic>multiple regression</topic><topic>Polymorphism, Single Nucleotide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cho, Seoae</creatorcontrib><creatorcontrib>Kim, Kyunga</creatorcontrib><creatorcontrib>Kim, Young Jin</creatorcontrib><creatorcontrib>Lee, Jong‐Keuk</creatorcontrib><creatorcontrib>Cho, Yoon Shin</creatorcontrib><creatorcontrib>Lee, Jong‐Young</creatorcontrib><creatorcontrib>Han, Bok‐Ghee</creatorcontrib><creatorcontrib>Kim, Heebal</creatorcontrib><creatorcontrib>Ott, Jurg</creatorcontrib><creatorcontrib>Park, Taesung</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Annals of human genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cho, Seoae</au><au>Kim, Kyunga</au><au>Kim, Young Jin</au><au>Lee, Jong‐Keuk</au><au>Cho, Yoon Shin</au><au>Lee, Jong‐Young</au><au>Han, Bok‐Ghee</au><au>Kim, Heebal</au><au>Ott, Jurg</au><au>Park, Taesung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint Identification of Multiple Genetic Variants via Elastic‐Net Variable Selection in a Genome‐Wide Association Analysis</atitle><jtitle>Annals of human genetics</jtitle><addtitle>Ann Hum Genet</addtitle><date>2010-09</date><risdate>2010</risdate><volume>74</volume><issue>5</issue><spage>416</spage><epage>428</epage><pages>416-428</pages><issn>0003-4800</issn><eissn>1469-1809</eissn><abstract>Summary Unraveling the genetic background of common complex traits is a major goal in modern genetics. In recent years, genome‐wide association (GWA) studies have been conducted with large‐scale data sets of genetic variants. Most of those studies have relied on single‐marker approaches that identify single genetic factors individually and can be limited in considering fully the joint effects of multiple genetic factors on complex traits. Joint identification of multiple genetic factors would be more powerful and would provide better prediction on complex traits since it utilizes combined information across variants. Here we propose a multi‐stage approach for GWA analysis: (1) prescreening, (2) joint identification of putative SNPs based on elastic‐net variable selection, and (3) empirical replication using bootstrap samples. Our approach enables an efficient joint search for genetic associations in GWA analysis. The suggested empirical replication method can be beneficial in GWA studies because one can avoid a costly, independent replication study while eliminating false‐positive associations and focusing on a smaller number of replicable variants. We applied the proposed approach to a GWA analysis, and jointly identified 129 genetic variants having an association with adult height in a Korean population.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>20642809</pmid><doi>10.1111/j.1469-1809.2010.00597.x</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-4800
ispartof Annals of human genetics, 2010-09, Vol.74 (5), p.416-428
issn 0003-4800
1469-1809
language eng
recordid cdi_proquest_miscellaneous_754895572
source Wiley Free Content; MEDLINE; IngentaConnect Free/Open Access Journals; Wiley Online Library Journals Frontfile Complete
subjects Adult
adult height
Asian Continental Ancestry Group - genetics
Body Height - genetics
elastic‐net variable selection
empirical replication
Genome-Wide Association Study
Genome‐wide association
Humans
multiple regression
Polymorphism, Single Nucleotide
title Joint Identification of Multiple Genetic Variants via Elastic‐Net Variable Selection in a Genome‐Wide Association Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T07%3A55%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20Identification%20of%20Multiple%20Genetic%20Variants%20via%20Elastic%E2%80%90Net%20Variable%20Selection%20in%20a%20Genome%E2%80%90Wide%20Association%20Analysis&rft.jtitle=Annals%20of%20human%20genetics&rft.au=Cho,%20Seoae&rft.date=2010-09&rft.volume=74&rft.issue=5&rft.spage=416&rft.epage=428&rft.pages=416-428&rft.issn=0003-4800&rft.eissn=1469-1809&rft_id=info:doi/10.1111/j.1469-1809.2010.00597.x&rft_dat=%3Cproquest_cross%3E754895572%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=748955718&rft_id=info:pmid/20642809&rfr_iscdi=true