Pacemaking activity is regulated by membrane stretch via the CICR pathway in cultured interstitial cells of Cajal from murine intestine

Abstract Membrane stretch is an important stimulus in gastrointestinal (GI) motility regulation, but the relationship between membrane stretch and the pacemaking activity of GI smooth muscle is poorly understood. We examined the effect of intestinal distension on slow waves and the effect of membran...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomechanics 2010-08, Vol.43 (11), p.2214-2220
Hauptverfasser: Yu Wang, Zuo, Fei Han, Yan, Huang, Xu, Zhao, Peng, Li Lu, Hong, Chul Kim, Young, Xie Xu, Wen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2220
container_issue 11
container_start_page 2214
container_title Journal of biomechanics
container_volume 43
creator Yu Wang, Zuo
Fei Han, Yan
Huang, Xu
Zhao, Peng
Li Lu, Hong
Chul Kim, Young
Xie Xu, Wen
description Abstract Membrane stretch is an important stimulus in gastrointestinal (GI) motility regulation, but the relationship between membrane stretch and the pacemaking activity of GI smooth muscle is poorly understood. We examined the effect of intestinal distension on slow waves and the effect of membrane stretch on pacemaker currents in cultured intestinal interstitial cells of Cajal (ICCs) from murine small intestine. At organ level, intestinal distension significantly increased amplitude of slow and fast waves, and enhanced frequencies of fast but not slow waves. At the cellular level, membrane stretch-induced by hyposmotic cell swelling (MSHC) depolarized membrane potential and activated large inward holding current, but suppressed amplitude of pacemaker potential or pacemaking current. External Ca2+ -free solution abolished pacemaker current and blocked MSHC-induced inward holding current. However, a sustained inward holding current was activated and the amplitude of pacemaker current was increased by high ethylene glycol tetraacetic acid (EGTA) in pipette. Then MSHC also potentiated the inward holding current. MSHC significantly increased amplitude of rhythmic Ca2+ transients and basal intracellular Ca2+ concentration ([Ca2+ ] i ). 2-APB blocked both pacemaker current and Ca2+ transients but did not alter the effect of MSHC on pacemaker current and Ca2+ transients. In contrast, ryanodine inhibited Ca2+ transients but not pacemaker current, and completely blocked MSHC-induced inward holding current and MSHC-induced increase of basal [Ca2+ ] i . These results suggest that intestinal distension potentiates intestinal motility by increasing the amplitude of slow waves. Membrane stretch potentiates pacemaking activity via releasing Ca2+ from calcium-induced calcium release (CICR) in cultured intestinal ICCs.
doi_str_mv 10.1016/j.jbiomech.2010.03.037
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_754893792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S002192901000182X</els_id><sourcerecordid>748926242</sourcerecordid><originalsourceid>FETCH-LOGICAL-c512t-3aca034f54722863e3cfb34c09a8029704e7381ad41e63ad40fcec1afb955a5b3</originalsourceid><addsrcrecordid>eNqFkluL1DAUx4so7rj6FZaAiE8dT5J20r6IUrwsLChewLeQpqc76fYyJunIfAK_tqfMrAv7shA4JPz-55L_SZILDmsOfPOmW3e1mwa027UAegRJRz1KVrxQMhWygMfJCkDwtBQlnCXPQugAQGWqfJqcCZAFL0Ctkr9fjcXB3Ljxmhkb3d7FA3OBebyeexOxYfWBDTjU3ozIQvQY7ZbtnWFxi6y6rL6xnYnbP4ZUI7NzH2dPIjdG9CG66EzPLPZ9YFPLKtPRtfXTwIbZO0q4cISN-Dx50po-4ItTPE9-fvzwo_qcXn35dFm9v0ptzkVMpbEGZNbmmRKi2EiUtq1lZqE0BYhSQYaKRjNNxnEjKUBr0XLT1mWem7yW58nrY96dn37PVFsPLiwN0njTHLTKs6KUqhQPkwSKjcgW8uU9sptmP9IYmlOzZS7LHIjaHCnrpxA8tnrn3WD8gSC9eKo7feupXjzVIOkoEl6c0s_1gM1_2a2JBLw6ASZY07dklXXhjpM8z7KiIO7dkUP64L1Dr4N1OFpsnEcbdTO5h3t5ey-F7d3oqOoNHjDcza2D0KC_Lxu4LCCn3eOF-CX_ATye2JQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1034953950</pqid></control><display><type>article</type><title>Pacemaking activity is regulated by membrane stretch via the CICR pathway in cultured interstitial cells of Cajal from murine intestine</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>ProQuest Central UK/Ireland</source><creator>Yu Wang, Zuo ; Fei Han, Yan ; Huang, Xu ; Zhao, Peng ; Li Lu, Hong ; Chul Kim, Young ; Xie Xu, Wen</creator><creatorcontrib>Yu Wang, Zuo ; Fei Han, Yan ; Huang, Xu ; Zhao, Peng ; Li Lu, Hong ; Chul Kim, Young ; Xie Xu, Wen</creatorcontrib><description>Abstract Membrane stretch is an important stimulus in gastrointestinal (GI) motility regulation, but the relationship between membrane stretch and the pacemaking activity of GI smooth muscle is poorly understood. We examined the effect of intestinal distension on slow waves and the effect of membrane stretch on pacemaker currents in cultured intestinal interstitial cells of Cajal (ICCs) from murine small intestine. At organ level, intestinal distension significantly increased amplitude of slow and fast waves, and enhanced frequencies of fast but not slow waves. At the cellular level, membrane stretch-induced by hyposmotic cell swelling (MSHC) depolarized membrane potential and activated large inward holding current, but suppressed amplitude of pacemaker potential or pacemaking current. External Ca2+ -free solution abolished pacemaker current and blocked MSHC-induced inward holding current. However, a sustained inward holding current was activated and the amplitude of pacemaker current was increased by high ethylene glycol tetraacetic acid (EGTA) in pipette. Then MSHC also potentiated the inward holding current. MSHC significantly increased amplitude of rhythmic Ca2+ transients and basal intracellular Ca2+ concentration ([Ca2+ ] i ). 2-APB blocked both pacemaker current and Ca2+ transients but did not alter the effect of MSHC on pacemaker current and Ca2+ transients. In contrast, ryanodine inhibited Ca2+ transients but not pacemaker current, and completely blocked MSHC-induced inward holding current and MSHC-induced increase of basal [Ca2+ ] i . These results suggest that intestinal distension potentiates intestinal motility by increasing the amplitude of slow waves. Membrane stretch potentiates pacemaking activity via releasing Ca2+ from calcium-induced calcium release (CICR) in cultured intestinal ICCs.</description><identifier>ISSN: 0021-9290</identifier><identifier>EISSN: 1873-2380</identifier><identifier>DOI: 10.1016/j.jbiomech.2010.03.037</identifier><identifier>PMID: 20381807</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Animals ; Biological and medical sciences ; Biological Clocks - physiology ; Calcium ; Calcium Signaling - physiology ; Calcium-induced calcium release ; Cell Membrane - physiology ; Cells, Cultured ; Elastic Modulus ; Feedback, Physiological - physiology ; Fundamental and applied biological sciences. Psychology ; Gastrointestinal Motility - physiology ; Interstitial cells of Cajal ; Interstitial Cells of Cajal - physiology ; Intestine. Mesentery ; Laboratory animals ; Mechanotransduction, Cellular - physiology ; Medical research ; Membrane stretch ; Mice ; Mice, Inbred BALB C ; Muscular system ; Pacemaking activity ; Physical Medicine and Rehabilitation ; Proteins ; Signal processing ; Smooth muscle ; Vertebrates: digestive system</subject><ispartof>Journal of biomechanics, 2010-08, Vol.43 (11), p.2214-2220</ispartof><rights>Elsevier Ltd</rights><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright 2010 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c512t-3aca034f54722863e3cfb34c09a8029704e7381ad41e63ad40fcec1afb955a5b3</citedby><cites>FETCH-LOGICAL-c512t-3aca034f54722863e3cfb34c09a8029704e7381ad41e63ad40fcec1afb955a5b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1034953950?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995,64385,64387,64389,72469</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23154488$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20381807$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu Wang, Zuo</creatorcontrib><creatorcontrib>Fei Han, Yan</creatorcontrib><creatorcontrib>Huang, Xu</creatorcontrib><creatorcontrib>Zhao, Peng</creatorcontrib><creatorcontrib>Li Lu, Hong</creatorcontrib><creatorcontrib>Chul Kim, Young</creatorcontrib><creatorcontrib>Xie Xu, Wen</creatorcontrib><title>Pacemaking activity is regulated by membrane stretch via the CICR pathway in cultured interstitial cells of Cajal from murine intestine</title><title>Journal of biomechanics</title><addtitle>J Biomech</addtitle><description>Abstract Membrane stretch is an important stimulus in gastrointestinal (GI) motility regulation, but the relationship between membrane stretch and the pacemaking activity of GI smooth muscle is poorly understood. We examined the effect of intestinal distension on slow waves and the effect of membrane stretch on pacemaker currents in cultured intestinal interstitial cells of Cajal (ICCs) from murine small intestine. At organ level, intestinal distension significantly increased amplitude of slow and fast waves, and enhanced frequencies of fast but not slow waves. At the cellular level, membrane stretch-induced by hyposmotic cell swelling (MSHC) depolarized membrane potential and activated large inward holding current, but suppressed amplitude of pacemaker potential or pacemaking current. External Ca2+ -free solution abolished pacemaker current and blocked MSHC-induced inward holding current. However, a sustained inward holding current was activated and the amplitude of pacemaker current was increased by high ethylene glycol tetraacetic acid (EGTA) in pipette. Then MSHC also potentiated the inward holding current. MSHC significantly increased amplitude of rhythmic Ca2+ transients and basal intracellular Ca2+ concentration ([Ca2+ ] i ). 2-APB blocked both pacemaker current and Ca2+ transients but did not alter the effect of MSHC on pacemaker current and Ca2+ transients. In contrast, ryanodine inhibited Ca2+ transients but not pacemaker current, and completely blocked MSHC-induced inward holding current and MSHC-induced increase of basal [Ca2+ ] i . These results suggest that intestinal distension potentiates intestinal motility by increasing the amplitude of slow waves. Membrane stretch potentiates pacemaking activity via releasing Ca2+ from calcium-induced calcium release (CICR) in cultured intestinal ICCs.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Biological Clocks - physiology</subject><subject>Calcium</subject><subject>Calcium Signaling - physiology</subject><subject>Calcium-induced calcium release</subject><subject>Cell Membrane - physiology</subject><subject>Cells, Cultured</subject><subject>Elastic Modulus</subject><subject>Feedback, Physiological - physiology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gastrointestinal Motility - physiology</subject><subject>Interstitial cells of Cajal</subject><subject>Interstitial Cells of Cajal - physiology</subject><subject>Intestine. Mesentery</subject><subject>Laboratory animals</subject><subject>Mechanotransduction, Cellular - physiology</subject><subject>Medical research</subject><subject>Membrane stretch</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Muscular system</subject><subject>Pacemaking activity</subject><subject>Physical Medicine and Rehabilitation</subject><subject>Proteins</subject><subject>Signal processing</subject><subject>Smooth muscle</subject><subject>Vertebrates: digestive system</subject><issn>0021-9290</issn><issn>1873-2380</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkluL1DAUx4so7rj6FZaAiE8dT5J20r6IUrwsLChewLeQpqc76fYyJunIfAK_tqfMrAv7shA4JPz-55L_SZILDmsOfPOmW3e1mwa027UAegRJRz1KVrxQMhWygMfJCkDwtBQlnCXPQugAQGWqfJqcCZAFL0Ctkr9fjcXB3Ljxmhkb3d7FA3OBebyeexOxYfWBDTjU3ozIQvQY7ZbtnWFxi6y6rL6xnYnbP4ZUI7NzH2dPIjdG9CG66EzPLPZ9YFPLKtPRtfXTwIbZO0q4cISN-Dx50po-4ItTPE9-fvzwo_qcXn35dFm9v0ptzkVMpbEGZNbmmRKi2EiUtq1lZqE0BYhSQYaKRjNNxnEjKUBr0XLT1mWem7yW58nrY96dn37PVFsPLiwN0njTHLTKs6KUqhQPkwSKjcgW8uU9sptmP9IYmlOzZS7LHIjaHCnrpxA8tnrn3WD8gSC9eKo7feupXjzVIOkoEl6c0s_1gM1_2a2JBLw6ASZY07dklXXhjpM8z7KiIO7dkUP64L1Dr4N1OFpsnEcbdTO5h3t5ey-F7d3oqOoNHjDcza2D0KC_Lxu4LCCn3eOF-CX_ATye2JQ</recordid><startdate>20100810</startdate><enddate>20100810</enddate><creator>Yu Wang, Zuo</creator><creator>Fei Han, Yan</creator><creator>Huang, Xu</creator><creator>Zhao, Peng</creator><creator>Li Lu, Hong</creator><creator>Chul Kim, Young</creator><creator>Xie Xu, Wen</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Elsevier Limited</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TB</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7TK</scope></search><sort><creationdate>20100810</creationdate><title>Pacemaking activity is regulated by membrane stretch via the CICR pathway in cultured interstitial cells of Cajal from murine intestine</title><author>Yu Wang, Zuo ; Fei Han, Yan ; Huang, Xu ; Zhao, Peng ; Li Lu, Hong ; Chul Kim, Young ; Xie Xu, Wen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c512t-3aca034f54722863e3cfb34c09a8029704e7381ad41e63ad40fcec1afb955a5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Biological Clocks - physiology</topic><topic>Calcium</topic><topic>Calcium Signaling - physiology</topic><topic>Calcium-induced calcium release</topic><topic>Cell Membrane - physiology</topic><topic>Cells, Cultured</topic><topic>Elastic Modulus</topic><topic>Feedback, Physiological - physiology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gastrointestinal Motility - physiology</topic><topic>Interstitial cells of Cajal</topic><topic>Interstitial Cells of Cajal - physiology</topic><topic>Intestine. Mesentery</topic><topic>Laboratory animals</topic><topic>Mechanotransduction, Cellular - physiology</topic><topic>Medical research</topic><topic>Membrane stretch</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Muscular system</topic><topic>Pacemaking activity</topic><topic>Physical Medicine and Rehabilitation</topic><topic>Proteins</topic><topic>Signal processing</topic><topic>Smooth muscle</topic><topic>Vertebrates: digestive system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu Wang, Zuo</creatorcontrib><creatorcontrib>Fei Han, Yan</creatorcontrib><creatorcontrib>Huang, Xu</creatorcontrib><creatorcontrib>Zhao, Peng</creatorcontrib><creatorcontrib>Li Lu, Hong</creatorcontrib><creatorcontrib>Chul Kim, Young</creatorcontrib><creatorcontrib>Xie Xu, Wen</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest research library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><jtitle>Journal of biomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu Wang, Zuo</au><au>Fei Han, Yan</au><au>Huang, Xu</au><au>Zhao, Peng</au><au>Li Lu, Hong</au><au>Chul Kim, Young</au><au>Xie Xu, Wen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pacemaking activity is regulated by membrane stretch via the CICR pathway in cultured interstitial cells of Cajal from murine intestine</atitle><jtitle>Journal of biomechanics</jtitle><addtitle>J Biomech</addtitle><date>2010-08-10</date><risdate>2010</risdate><volume>43</volume><issue>11</issue><spage>2214</spage><epage>2220</epage><pages>2214-2220</pages><issn>0021-9290</issn><eissn>1873-2380</eissn><abstract>Abstract Membrane stretch is an important stimulus in gastrointestinal (GI) motility regulation, but the relationship between membrane stretch and the pacemaking activity of GI smooth muscle is poorly understood. We examined the effect of intestinal distension on slow waves and the effect of membrane stretch on pacemaker currents in cultured intestinal interstitial cells of Cajal (ICCs) from murine small intestine. At organ level, intestinal distension significantly increased amplitude of slow and fast waves, and enhanced frequencies of fast but not slow waves. At the cellular level, membrane stretch-induced by hyposmotic cell swelling (MSHC) depolarized membrane potential and activated large inward holding current, but suppressed amplitude of pacemaker potential or pacemaking current. External Ca2+ -free solution abolished pacemaker current and blocked MSHC-induced inward holding current. However, a sustained inward holding current was activated and the amplitude of pacemaker current was increased by high ethylene glycol tetraacetic acid (EGTA) in pipette. Then MSHC also potentiated the inward holding current. MSHC significantly increased amplitude of rhythmic Ca2+ transients and basal intracellular Ca2+ concentration ([Ca2+ ] i ). 2-APB blocked both pacemaker current and Ca2+ transients but did not alter the effect of MSHC on pacemaker current and Ca2+ transients. In contrast, ryanodine inhibited Ca2+ transients but not pacemaker current, and completely blocked MSHC-induced inward holding current and MSHC-induced increase of basal [Ca2+ ] i . These results suggest that intestinal distension potentiates intestinal motility by increasing the amplitude of slow waves. Membrane stretch potentiates pacemaking activity via releasing Ca2+ from calcium-induced calcium release (CICR) in cultured intestinal ICCs.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>20381807</pmid><doi>10.1016/j.jbiomech.2010.03.037</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9290
ispartof Journal of biomechanics, 2010-08, Vol.43 (11), p.2214-2220
issn 0021-9290
1873-2380
language eng
recordid cdi_proquest_miscellaneous_754893792
source MEDLINE; Elsevier ScienceDirect Journals Complete; ProQuest Central UK/Ireland
subjects Animals
Biological and medical sciences
Biological Clocks - physiology
Calcium
Calcium Signaling - physiology
Calcium-induced calcium release
Cell Membrane - physiology
Cells, Cultured
Elastic Modulus
Feedback, Physiological - physiology
Fundamental and applied biological sciences. Psychology
Gastrointestinal Motility - physiology
Interstitial cells of Cajal
Interstitial Cells of Cajal - physiology
Intestine. Mesentery
Laboratory animals
Mechanotransduction, Cellular - physiology
Medical research
Membrane stretch
Mice
Mice, Inbred BALB C
Muscular system
Pacemaking activity
Physical Medicine and Rehabilitation
Proteins
Signal processing
Smooth muscle
Vertebrates: digestive system
title Pacemaking activity is regulated by membrane stretch via the CICR pathway in cultured interstitial cells of Cajal from murine intestine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A07%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pacemaking%20activity%20is%20regulated%20by%20membrane%20stretch%20via%20the%20CICR%20pathway%20in%20cultured%20interstitial%20cells%20of%20Cajal%20from%20murine%20intestine&rft.jtitle=Journal%20of%20biomechanics&rft.au=Yu%20Wang,%20Zuo&rft.date=2010-08-10&rft.volume=43&rft.issue=11&rft.spage=2214&rft.epage=2220&rft.pages=2214-2220&rft.issn=0021-9290&rft.eissn=1873-2380&rft_id=info:doi/10.1016/j.jbiomech.2010.03.037&rft_dat=%3Cproquest_cross%3E748926242%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1034953950&rft_id=info:pmid/20381807&rft_els_id=1_s2_0_S002192901000182X&rfr_iscdi=true