Non-invasive estimation of local field potentials for neuroprosthesis control

Recent experiments have shown the possibility of using the brain electrical activity to directly control the movement of robots or prosthetic devices in real time. Such neuroprostheses can be invasive or non-invasive, depending on how the brain signals are recorded. In principle, invasive approaches...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cognitive processing 2005-03, Vol.6 (1), p.59-64
Hauptverfasser: Grave de Peralta Menendez, Rolando, Gonz lez Andino, Sara, Perez, Lucas, Ferrez, Pierre W., Mill n, Jos del R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 64
container_issue 1
container_start_page 59
container_title Cognitive processing
container_volume 6
creator Grave de Peralta Menendez, Rolando
Gonz lez Andino, Sara
Perez, Lucas
Ferrez, Pierre W.
Mill n, Jos del R.
description Recent experiments have shown the possibility of using the brain electrical activity to directly control the movement of robots or prosthetic devices in real time. Such neuroprostheses can be invasive or non-invasive, depending on how the brain signals are recorded. In principle, invasive approaches will provide a more natural and flexible control of neuroprostheses, but their use in humans is debatable given the inherent medical risks. Non-invasive approaches mainly use scalp electroencephalogram (EEG) signals and their main disadvantage is that these signals represent the noisy spatiotemporal overlapping of activity arising from very diverse brain regions, i.e., a single scalp electrode picks up and mixes the temporal activity of myriads of neurons at very different brain areas. In order to combine the benefits of both approaches, we propose to rely on the non-invasive estimation of local field potentials (LFP) in the whole human brain from the scalp measured EEG data using a recently developed inverse solution (ELECTRA) to the EEG inverse problem. The goal of a linear inverse procedure is to de-convolve or un-mix the scalp signals attributing to each brain area its own temporal activity. To illustrate the advantage of this approach we compare, using an identical set of spectral features, classification of rapid voluntary finger self-tapping with left and right hands based on scalp EEG and non-invasively estimated LFP on two subjects using a different number of electrodes.
doi_str_mv 10.1007/s10339-004-0043-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_754890920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>754890920</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330x-aa1a8e9d999d5e1c56861e47f8b236bee69501d3bbff802d0d7175e5be1dcddc3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKs_wFtunqKTzX7lKEWtUPWi55BNJhjZJjXZlvrvTal4eJk5PAzvPIRcc7jlAN1d5iCEZAD1IYLtT8iMt7xidSfh9H_vq3NykfMXQCVB1DPy8hoD82Gns98hxTz5tZ58DDQ6OkajR-o8jpZu4oRh8nrM1MVEA25T3KSYp0_MPlMTw5TieEnOXEHw6m_Oycfjw_tiyVZvT8-L-xUzQsCeac11j9JKKW2D3DRt33KsO9cPlWgHxFY2wK0YBud6qCzYjncNNgNya6w1Yk5ujndLhe9taa3WPhscRx0wbrPqmrqXICsoJD-SppTNCZ3apPJi-lEc1MGcOppTxdohQu3FLxMmY80</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>754890920</pqid></control><display><type>article</type><title>Non-invasive estimation of local field potentials for neuroprosthesis control</title><source>Springer Nature - Complete Springer Journals</source><creator>Grave de Peralta Menendez, Rolando ; Gonz lez Andino, Sara ; Perez, Lucas ; Ferrez, Pierre W. ; Mill n, Jos del R.</creator><creatorcontrib>Grave de Peralta Menendez, Rolando ; Gonz lez Andino, Sara ; Perez, Lucas ; Ferrez, Pierre W. ; Mill n, Jos del R.</creatorcontrib><description>Recent experiments have shown the possibility of using the brain electrical activity to directly control the movement of robots or prosthetic devices in real time. Such neuroprostheses can be invasive or non-invasive, depending on how the brain signals are recorded. In principle, invasive approaches will provide a more natural and flexible control of neuroprostheses, but their use in humans is debatable given the inherent medical risks. Non-invasive approaches mainly use scalp electroencephalogram (EEG) signals and their main disadvantage is that these signals represent the noisy spatiotemporal overlapping of activity arising from very diverse brain regions, i.e., a single scalp electrode picks up and mixes the temporal activity of myriads of neurons at very different brain areas. In order to combine the benefits of both approaches, we propose to rely on the non-invasive estimation of local field potentials (LFP) in the whole human brain from the scalp measured EEG data using a recently developed inverse solution (ELECTRA) to the EEG inverse problem. The goal of a linear inverse procedure is to de-convolve or un-mix the scalp signals attributing to each brain area its own temporal activity. To illustrate the advantage of this approach we compare, using an identical set of spectral features, classification of rapid voluntary finger self-tapping with left and right hands based on scalp EEG and non-invasively estimated LFP on two subjects using a different number of electrodes.</description><identifier>ISSN: 1612-4782</identifier><identifier>EISSN: 1612-4790</identifier><identifier>DOI: 10.1007/s10339-004-0043-x</identifier><language>eng</language><subject>Electra</subject><ispartof>Cognitive processing, 2005-03, Vol.6 (1), p.59-64</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330x-aa1a8e9d999d5e1c56861e47f8b236bee69501d3bbff802d0d7175e5be1dcddc3</citedby><cites>FETCH-LOGICAL-c330x-aa1a8e9d999d5e1c56861e47f8b236bee69501d3bbff802d0d7175e5be1dcddc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Grave de Peralta Menendez, Rolando</creatorcontrib><creatorcontrib>Gonz lez Andino, Sara</creatorcontrib><creatorcontrib>Perez, Lucas</creatorcontrib><creatorcontrib>Ferrez, Pierre W.</creatorcontrib><creatorcontrib>Mill n, Jos del R.</creatorcontrib><title>Non-invasive estimation of local field potentials for neuroprosthesis control</title><title>Cognitive processing</title><description>Recent experiments have shown the possibility of using the brain electrical activity to directly control the movement of robots or prosthetic devices in real time. Such neuroprostheses can be invasive or non-invasive, depending on how the brain signals are recorded. In principle, invasive approaches will provide a more natural and flexible control of neuroprostheses, but their use in humans is debatable given the inherent medical risks. Non-invasive approaches mainly use scalp electroencephalogram (EEG) signals and their main disadvantage is that these signals represent the noisy spatiotemporal overlapping of activity arising from very diverse brain regions, i.e., a single scalp electrode picks up and mixes the temporal activity of myriads of neurons at very different brain areas. In order to combine the benefits of both approaches, we propose to rely on the non-invasive estimation of local field potentials (LFP) in the whole human brain from the scalp measured EEG data using a recently developed inverse solution (ELECTRA) to the EEG inverse problem. The goal of a linear inverse procedure is to de-convolve or un-mix the scalp signals attributing to each brain area its own temporal activity. To illustrate the advantage of this approach we compare, using an identical set of spectral features, classification of rapid voluntary finger self-tapping with left and right hands based on scalp EEG and non-invasively estimated LFP on two subjects using a different number of electrodes.</description><subject>Electra</subject><issn>1612-4782</issn><issn>1612-4790</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKs_wFtunqKTzX7lKEWtUPWi55BNJhjZJjXZlvrvTal4eJk5PAzvPIRcc7jlAN1d5iCEZAD1IYLtT8iMt7xidSfh9H_vq3NykfMXQCVB1DPy8hoD82Gns98hxTz5tZ58DDQ6OkajR-o8jpZu4oRh8nrM1MVEA25T3KSYp0_MPlMTw5TieEnOXEHw6m_Oycfjw_tiyVZvT8-L-xUzQsCeac11j9JKKW2D3DRt33KsO9cPlWgHxFY2wK0YBud6qCzYjncNNgNya6w1Yk5ujndLhe9taa3WPhscRx0wbrPqmrqXICsoJD-SppTNCZ3apPJi-lEc1MGcOppTxdohQu3FLxMmY80</recordid><startdate>200503</startdate><enddate>200503</enddate><creator>Grave de Peralta Menendez, Rolando</creator><creator>Gonz lez Andino, Sara</creator><creator>Perez, Lucas</creator><creator>Ferrez, Pierre W.</creator><creator>Mill n, Jos del R.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope></search><sort><creationdate>200503</creationdate><title>Non-invasive estimation of local field potentials for neuroprosthesis control</title><author>Grave de Peralta Menendez, Rolando ; Gonz lez Andino, Sara ; Perez, Lucas ; Ferrez, Pierre W. ; Mill n, Jos del R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330x-aa1a8e9d999d5e1c56861e47f8b236bee69501d3bbff802d0d7175e5be1dcddc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Electra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grave de Peralta Menendez, Rolando</creatorcontrib><creatorcontrib>Gonz lez Andino, Sara</creatorcontrib><creatorcontrib>Perez, Lucas</creatorcontrib><creatorcontrib>Ferrez, Pierre W.</creatorcontrib><creatorcontrib>Mill n, Jos del R.</creatorcontrib><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><jtitle>Cognitive processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grave de Peralta Menendez, Rolando</au><au>Gonz lez Andino, Sara</au><au>Perez, Lucas</au><au>Ferrez, Pierre W.</au><au>Mill n, Jos del R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-invasive estimation of local field potentials for neuroprosthesis control</atitle><jtitle>Cognitive processing</jtitle><date>2005-03</date><risdate>2005</risdate><volume>6</volume><issue>1</issue><spage>59</spage><epage>64</epage><pages>59-64</pages><issn>1612-4782</issn><eissn>1612-4790</eissn><abstract>Recent experiments have shown the possibility of using the brain electrical activity to directly control the movement of robots or prosthetic devices in real time. Such neuroprostheses can be invasive or non-invasive, depending on how the brain signals are recorded. In principle, invasive approaches will provide a more natural and flexible control of neuroprostheses, but their use in humans is debatable given the inherent medical risks. Non-invasive approaches mainly use scalp electroencephalogram (EEG) signals and their main disadvantage is that these signals represent the noisy spatiotemporal overlapping of activity arising from very diverse brain regions, i.e., a single scalp electrode picks up and mixes the temporal activity of myriads of neurons at very different brain areas. In order to combine the benefits of both approaches, we propose to rely on the non-invasive estimation of local field potentials (LFP) in the whole human brain from the scalp measured EEG data using a recently developed inverse solution (ELECTRA) to the EEG inverse problem. The goal of a linear inverse procedure is to de-convolve or un-mix the scalp signals attributing to each brain area its own temporal activity. To illustrate the advantage of this approach we compare, using an identical set of spectral features, classification of rapid voluntary finger self-tapping with left and right hands based on scalp EEG and non-invasively estimated LFP on two subjects using a different number of electrodes.</abstract><doi>10.1007/s10339-004-0043-x</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1612-4782
ispartof Cognitive processing, 2005-03, Vol.6 (1), p.59-64
issn 1612-4782
1612-4790
language eng
recordid cdi_proquest_miscellaneous_754890920
source Springer Nature - Complete Springer Journals
subjects Electra
title Non-invasive estimation of local field potentials for neuroprosthesis control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T15%3A19%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-invasive%20estimation%20of%20local%20field%20potentials%20for%20neuroprosthesis%20control&rft.jtitle=Cognitive%20processing&rft.au=Grave%20de%20Peralta%20Menendez,%20Rolando&rft.date=2005-03&rft.volume=6&rft.issue=1&rft.spage=59&rft.epage=64&rft.pages=59-64&rft.issn=1612-4782&rft.eissn=1612-4790&rft_id=info:doi/10.1007/s10339-004-0043-x&rft_dat=%3Cproquest_cross%3E754890920%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=754890920&rft_id=info:pmid/&rfr_iscdi=true