Non-invasive estimation of local field potentials for neuroprosthesis control
Recent experiments have shown the possibility of using the brain electrical activity to directly control the movement of robots or prosthetic devices in real time. Such neuroprostheses can be invasive or non-invasive, depending on how the brain signals are recorded. In principle, invasive approaches...
Gespeichert in:
Veröffentlicht in: | Cognitive processing 2005-03, Vol.6 (1), p.59-64 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 64 |
---|---|
container_issue | 1 |
container_start_page | 59 |
container_title | Cognitive processing |
container_volume | 6 |
creator | Grave de Peralta Menendez, Rolando Gonz lez Andino, Sara Perez, Lucas Ferrez, Pierre W. Mill n, Jos del R. |
description | Recent experiments have shown the possibility of using the brain electrical activity to directly control the movement of robots or prosthetic devices in real time. Such neuroprostheses can be invasive or non-invasive, depending on how the brain signals are recorded. In principle, invasive approaches will provide a more natural and flexible control of neuroprostheses, but their use in humans is debatable given the inherent medical risks. Non-invasive approaches mainly use scalp electroencephalogram (EEG) signals and their main disadvantage is that these signals represent the noisy spatiotemporal overlapping of activity arising from very diverse brain regions, i.e., a single scalp electrode picks up and mixes the temporal activity of myriads of neurons at very different brain areas. In order to combine the benefits of both approaches, we propose to rely on the non-invasive estimation of local field potentials (LFP) in the whole human brain from the scalp measured EEG data using a recently developed inverse solution (ELECTRA) to the EEG inverse problem. The goal of a linear inverse procedure is to de-convolve or un-mix the scalp signals attributing to each brain area its own temporal activity. To illustrate the advantage of this approach we compare, using an identical set of spectral features, classification of rapid voluntary finger self-tapping with left and right hands based on scalp EEG and non-invasively estimated LFP on two subjects using a different number of electrodes. |
doi_str_mv | 10.1007/s10339-004-0043-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_754890920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>754890920</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330x-aa1a8e9d999d5e1c56861e47f8b236bee69501d3bbff802d0d7175e5be1dcddc3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKs_wFtunqKTzX7lKEWtUPWi55BNJhjZJjXZlvrvTal4eJk5PAzvPIRcc7jlAN1d5iCEZAD1IYLtT8iMt7xidSfh9H_vq3NykfMXQCVB1DPy8hoD82Gns98hxTz5tZ58DDQ6OkajR-o8jpZu4oRh8nrM1MVEA25T3KSYp0_MPlMTw5TieEnOXEHw6m_Oycfjw_tiyVZvT8-L-xUzQsCeac11j9JKKW2D3DRt33KsO9cPlWgHxFY2wK0YBud6qCzYjncNNgNya6w1Yk5ujndLhe9taa3WPhscRx0wbrPqmrqXICsoJD-SppTNCZ3apPJi-lEc1MGcOppTxdohQu3FLxMmY80</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>754890920</pqid></control><display><type>article</type><title>Non-invasive estimation of local field potentials for neuroprosthesis control</title><source>Springer Nature - Complete Springer Journals</source><creator>Grave de Peralta Menendez, Rolando ; Gonz lez Andino, Sara ; Perez, Lucas ; Ferrez, Pierre W. ; Mill n, Jos del R.</creator><creatorcontrib>Grave de Peralta Menendez, Rolando ; Gonz lez Andino, Sara ; Perez, Lucas ; Ferrez, Pierre W. ; Mill n, Jos del R.</creatorcontrib><description>Recent experiments have shown the possibility of using the brain electrical activity to directly control the movement of robots or prosthetic devices in real time. Such neuroprostheses can be invasive or non-invasive, depending on how the brain signals are recorded. In principle, invasive approaches will provide a more natural and flexible control of neuroprostheses, but their use in humans is debatable given the inherent medical risks. Non-invasive approaches mainly use scalp electroencephalogram (EEG) signals and their main disadvantage is that these signals represent the noisy spatiotemporal overlapping of activity arising from very diverse brain regions, i.e., a single scalp electrode picks up and mixes the temporal activity of myriads of neurons at very different brain areas. In order to combine the benefits of both approaches, we propose to rely on the non-invasive estimation of local field potentials (LFP) in the whole human brain from the scalp measured EEG data using a recently developed inverse solution (ELECTRA) to the EEG inverse problem. The goal of a linear inverse procedure is to de-convolve or un-mix the scalp signals attributing to each brain area its own temporal activity. To illustrate the advantage of this approach we compare, using an identical set of spectral features, classification of rapid voluntary finger self-tapping with left and right hands based on scalp EEG and non-invasively estimated LFP on two subjects using a different number of electrodes.</description><identifier>ISSN: 1612-4782</identifier><identifier>EISSN: 1612-4790</identifier><identifier>DOI: 10.1007/s10339-004-0043-x</identifier><language>eng</language><subject>Electra</subject><ispartof>Cognitive processing, 2005-03, Vol.6 (1), p.59-64</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330x-aa1a8e9d999d5e1c56861e47f8b236bee69501d3bbff802d0d7175e5be1dcddc3</citedby><cites>FETCH-LOGICAL-c330x-aa1a8e9d999d5e1c56861e47f8b236bee69501d3bbff802d0d7175e5be1dcddc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Grave de Peralta Menendez, Rolando</creatorcontrib><creatorcontrib>Gonz lez Andino, Sara</creatorcontrib><creatorcontrib>Perez, Lucas</creatorcontrib><creatorcontrib>Ferrez, Pierre W.</creatorcontrib><creatorcontrib>Mill n, Jos del R.</creatorcontrib><title>Non-invasive estimation of local field potentials for neuroprosthesis control</title><title>Cognitive processing</title><description>Recent experiments have shown the possibility of using the brain electrical activity to directly control the movement of robots or prosthetic devices in real time. Such neuroprostheses can be invasive or non-invasive, depending on how the brain signals are recorded. In principle, invasive approaches will provide a more natural and flexible control of neuroprostheses, but their use in humans is debatable given the inherent medical risks. Non-invasive approaches mainly use scalp electroencephalogram (EEG) signals and their main disadvantage is that these signals represent the noisy spatiotemporal overlapping of activity arising from very diverse brain regions, i.e., a single scalp electrode picks up and mixes the temporal activity of myriads of neurons at very different brain areas. In order to combine the benefits of both approaches, we propose to rely on the non-invasive estimation of local field potentials (LFP) in the whole human brain from the scalp measured EEG data using a recently developed inverse solution (ELECTRA) to the EEG inverse problem. The goal of a linear inverse procedure is to de-convolve or un-mix the scalp signals attributing to each brain area its own temporal activity. To illustrate the advantage of this approach we compare, using an identical set of spectral features, classification of rapid voluntary finger self-tapping with left and right hands based on scalp EEG and non-invasively estimated LFP on two subjects using a different number of electrodes.</description><subject>Electra</subject><issn>1612-4782</issn><issn>1612-4790</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKs_wFtunqKTzX7lKEWtUPWi55BNJhjZJjXZlvrvTal4eJk5PAzvPIRcc7jlAN1d5iCEZAD1IYLtT8iMt7xidSfh9H_vq3NykfMXQCVB1DPy8hoD82Gns98hxTz5tZ58DDQ6OkajR-o8jpZu4oRh8nrM1MVEA25T3KSYp0_MPlMTw5TieEnOXEHw6m_Oycfjw_tiyVZvT8-L-xUzQsCeac11j9JKKW2D3DRt33KsO9cPlWgHxFY2wK0YBud6qCzYjncNNgNya6w1Yk5ujndLhe9taa3WPhscRx0wbrPqmrqXICsoJD-SppTNCZ3apPJi-lEc1MGcOppTxdohQu3FLxMmY80</recordid><startdate>200503</startdate><enddate>200503</enddate><creator>Grave de Peralta Menendez, Rolando</creator><creator>Gonz lez Andino, Sara</creator><creator>Perez, Lucas</creator><creator>Ferrez, Pierre W.</creator><creator>Mill n, Jos del R.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope></search><sort><creationdate>200503</creationdate><title>Non-invasive estimation of local field potentials for neuroprosthesis control</title><author>Grave de Peralta Menendez, Rolando ; Gonz lez Andino, Sara ; Perez, Lucas ; Ferrez, Pierre W. ; Mill n, Jos del R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330x-aa1a8e9d999d5e1c56861e47f8b236bee69501d3bbff802d0d7175e5be1dcddc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Electra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grave de Peralta Menendez, Rolando</creatorcontrib><creatorcontrib>Gonz lez Andino, Sara</creatorcontrib><creatorcontrib>Perez, Lucas</creatorcontrib><creatorcontrib>Ferrez, Pierre W.</creatorcontrib><creatorcontrib>Mill n, Jos del R.</creatorcontrib><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><jtitle>Cognitive processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grave de Peralta Menendez, Rolando</au><au>Gonz lez Andino, Sara</au><au>Perez, Lucas</au><au>Ferrez, Pierre W.</au><au>Mill n, Jos del R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-invasive estimation of local field potentials for neuroprosthesis control</atitle><jtitle>Cognitive processing</jtitle><date>2005-03</date><risdate>2005</risdate><volume>6</volume><issue>1</issue><spage>59</spage><epage>64</epage><pages>59-64</pages><issn>1612-4782</issn><eissn>1612-4790</eissn><abstract>Recent experiments have shown the possibility of using the brain electrical activity to directly control the movement of robots or prosthetic devices in real time. Such neuroprostheses can be invasive or non-invasive, depending on how the brain signals are recorded. In principle, invasive approaches will provide a more natural and flexible control of neuroprostheses, but their use in humans is debatable given the inherent medical risks. Non-invasive approaches mainly use scalp electroencephalogram (EEG) signals and their main disadvantage is that these signals represent the noisy spatiotemporal overlapping of activity arising from very diverse brain regions, i.e., a single scalp electrode picks up and mixes the temporal activity of myriads of neurons at very different brain areas. In order to combine the benefits of both approaches, we propose to rely on the non-invasive estimation of local field potentials (LFP) in the whole human brain from the scalp measured EEG data using a recently developed inverse solution (ELECTRA) to the EEG inverse problem. The goal of a linear inverse procedure is to de-convolve or un-mix the scalp signals attributing to each brain area its own temporal activity. To illustrate the advantage of this approach we compare, using an identical set of spectral features, classification of rapid voluntary finger self-tapping with left and right hands based on scalp EEG and non-invasively estimated LFP on two subjects using a different number of electrodes.</abstract><doi>10.1007/s10339-004-0043-x</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1612-4782 |
ispartof | Cognitive processing, 2005-03, Vol.6 (1), p.59-64 |
issn | 1612-4782 1612-4790 |
language | eng |
recordid | cdi_proquest_miscellaneous_754890920 |
source | Springer Nature - Complete Springer Journals |
subjects | Electra |
title | Non-invasive estimation of local field potentials for neuroprosthesis control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T15%3A19%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-invasive%20estimation%20of%20local%20field%20potentials%20for%20neuroprosthesis%20control&rft.jtitle=Cognitive%20processing&rft.au=Grave%20de%20Peralta%20Menendez,%20Rolando&rft.date=2005-03&rft.volume=6&rft.issue=1&rft.spage=59&rft.epage=64&rft.pages=59-64&rft.issn=1612-4782&rft.eissn=1612-4790&rft_id=info:doi/10.1007/s10339-004-0043-x&rft_dat=%3Cproquest_cross%3E754890920%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=754890920&rft_id=info:pmid/&rfr_iscdi=true |