Left-ventricular pressure gradients : a computer-model simulation

Both invasive left-ventricular pressure measurements and non-invasive colour M-mode echographic measurements have shown the existence of intraventricular pressure gradients (IVPGs) during early filling. The mechanisms responsible for these IVPG cannot be completely explained by the experiments. Ther...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical & biological engineering & computing 1999-07, Vol.37 (4), p.511-516
Hauptverfasser: VERDONCK, P, VIERENDEELS, J, RIEMSLAGH, K, DICK, E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 516
container_issue 4
container_start_page 511
container_title Medical & biological engineering & computing
container_volume 37
creator VERDONCK, P
VIERENDEELS, J
RIEMSLAGH, K
DICK, E
description Both invasive left-ventricular pressure measurements and non-invasive colour M-mode echographic measurements have shown the existence of intraventricular pressure gradients (IVPGs) during early filling. The mechanisms responsible for these IVPG cannot be completely explained by the experiments. Therefore a one-dimensional numerical model is developed and validated. The model describes filling (both velocities and pressures) along a left ventricular (LV) base-apex axis. Blood-wall interaction in the left ventricle with moving boundaries is taken into account. The computational results for a canine heart indicate that the observed IVPGs during filling are the consequence of a complex interaction between, on the one hand, pressure waves travelling in the LV and, on the other hand, LV geometry, relaxation and compliance. The computational results indicate the pressure dependency of wavespeed (0.77-1.90 m-1 s) for different mean intraventricular pressures (0.88-5.00 mmHg) and IVPGs up to 2 mmHg, independent of the ratio of end systolic volume and equilibrium volume. Increasing relaxation rate not only decreases minimum basal pressure (2.8 instead of 3.6 mmHg) but also has a strong influence on the time delay between the minimum basal and apical pressures (14 ms instead of 49 ms). The results sustain the hypothesis that pressure-wave propagation determines IVPGs and that IVPGs are no proof of elastic recoil.
doi_str_mv 10.1007/BF02513338
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_754884329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>754884329</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-fccc96567a03bfae9d785008a3f59914668d611a4c1798550adcc65abce762b63</originalsourceid><addsrcrecordid>eNqF0U1LxDAQBuAgiq6rF3-AFBEVoTrTTNLEm4pfsOBFzyWbplLpx5q0gv_eyC4oHpQ5zGEe3sO8jO0hnCFAfn51C5lAzrlaYxPMCVMgonU2ASRIAVFtse0QXgEyFBltsi0EqWWOMGGXM1cN6bvrBl_bsTE-WXgXwuhd8uJNWcdDSC4Sk9i-XYyD82nbl65JQt1GPdR9t8M2KtMEt7vaU_Z8e_N0fZ_OHu8eri9nqSUuhrSy1mopZG6AzyvjdJkrAaAMr4TWSFKqUiIasphrJQSY0lopzNy6XGZzyafseJm78P3b6MJQtHWwrmlM5_oxFLkgpYhnOsqjP6XURJxr-hdmyCVo-IInf0KMz4yZWZwpO_hFX_vRd_EzhSSFpCSIiE6XyPo-BO-qYuHr1viPAqH46rT47jTi_VXiOG9d-YMuS4zgcAVMsKapvOlsHb6dzpQk4J8Yj6Wk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>648148605</pqid></control><display><type>article</type><title>Left-ventricular pressure gradients : a computer-model simulation</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>VERDONCK, P ; VIERENDEELS, J ; RIEMSLAGH, K ; DICK, E</creator><creatorcontrib>VERDONCK, P ; VIERENDEELS, J ; RIEMSLAGH, K ; DICK, E</creatorcontrib><description>Both invasive left-ventricular pressure measurements and non-invasive colour M-mode echographic measurements have shown the existence of intraventricular pressure gradients (IVPGs) during early filling. The mechanisms responsible for these IVPG cannot be completely explained by the experiments. Therefore a one-dimensional numerical model is developed and validated. The model describes filling (both velocities and pressures) along a left ventricular (LV) base-apex axis. Blood-wall interaction in the left ventricle with moving boundaries is taken into account. The computational results for a canine heart indicate that the observed IVPGs during filling are the consequence of a complex interaction between, on the one hand, pressure waves travelling in the LV and, on the other hand, LV geometry, relaxation and compliance. The computational results indicate the pressure dependency of wavespeed (0.77-1.90 m-1 s) for different mean intraventricular pressures (0.88-5.00 mmHg) and IVPGs up to 2 mmHg, independent of the ratio of end systolic volume and equilibrium volume. Increasing relaxation rate not only decreases minimum basal pressure (2.8 instead of 3.6 mmHg) but also has a strong influence on the time delay between the minimum basal and apical pressures (14 ms instead of 49 ms). The results sustain the hypothesis that pressure-wave propagation determines IVPGs and that IVPGs are no proof of elastic recoil.</description><identifier>ISSN: 0140-0118</identifier><identifier>EISSN: 1741-0444</identifier><identifier>DOI: 10.1007/BF02513338</identifier><identifier>PMID: 10696710</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Biological and medical sciences ; Blood ; Blood Pressure ; Boundaries ; Color ; Colour ; Computation ; Computer Simulation ; Computerized, statistical medical data processing and models in biomedicine ; Echocardiography ; Elasticity ; Fundamental and applied biological sciences. Psychology ; Heart ; Hemodynamics ; Humans ; Mathematical models ; Medical sciences ; Models and simulation ; Models, Cardiovascular ; Muscle ; Pressure effects ; Pressure gradients ; Pressure measurement ; Pressure waves ; Studies ; Time delay ; Velocity ; Ventricular Function, Left ; Vertebrates: cardiovascular system</subject><ispartof>Medical &amp; biological engineering &amp; computing, 1999-07, Vol.37 (4), p.511-516</ispartof><rights>1999 INIST-CNRS</rights><rights>IFMBE 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-fccc96567a03bfae9d785008a3f59914668d611a4c1798550adcc65abce762b63</citedby><cites>FETCH-LOGICAL-c435t-fccc96567a03bfae9d785008a3f59914668d611a4c1798550adcc65abce762b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1928640$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10696710$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>VERDONCK, P</creatorcontrib><creatorcontrib>VIERENDEELS, J</creatorcontrib><creatorcontrib>RIEMSLAGH, K</creatorcontrib><creatorcontrib>DICK, E</creatorcontrib><title>Left-ventricular pressure gradients : a computer-model simulation</title><title>Medical &amp; biological engineering &amp; computing</title><addtitle>Med Biol Eng Comput</addtitle><description>Both invasive left-ventricular pressure measurements and non-invasive colour M-mode echographic measurements have shown the existence of intraventricular pressure gradients (IVPGs) during early filling. The mechanisms responsible for these IVPG cannot be completely explained by the experiments. Therefore a one-dimensional numerical model is developed and validated. The model describes filling (both velocities and pressures) along a left ventricular (LV) base-apex axis. Blood-wall interaction in the left ventricle with moving boundaries is taken into account. The computational results for a canine heart indicate that the observed IVPGs during filling are the consequence of a complex interaction between, on the one hand, pressure waves travelling in the LV and, on the other hand, LV geometry, relaxation and compliance. The computational results indicate the pressure dependency of wavespeed (0.77-1.90 m-1 s) for different mean intraventricular pressures (0.88-5.00 mmHg) and IVPGs up to 2 mmHg, independent of the ratio of end systolic volume and equilibrium volume. Increasing relaxation rate not only decreases minimum basal pressure (2.8 instead of 3.6 mmHg) but also has a strong influence on the time delay between the minimum basal and apical pressures (14 ms instead of 49 ms). The results sustain the hypothesis that pressure-wave propagation determines IVPGs and that IVPGs are no proof of elastic recoil.</description><subject>Biological and medical sciences</subject><subject>Blood</subject><subject>Blood Pressure</subject><subject>Boundaries</subject><subject>Color</subject><subject>Colour</subject><subject>Computation</subject><subject>Computer Simulation</subject><subject>Computerized, statistical medical data processing and models in biomedicine</subject><subject>Echocardiography</subject><subject>Elasticity</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Heart</subject><subject>Hemodynamics</subject><subject>Humans</subject><subject>Mathematical models</subject><subject>Medical sciences</subject><subject>Models and simulation</subject><subject>Models, Cardiovascular</subject><subject>Muscle</subject><subject>Pressure effects</subject><subject>Pressure gradients</subject><subject>Pressure measurement</subject><subject>Pressure waves</subject><subject>Studies</subject><subject>Time delay</subject><subject>Velocity</subject><subject>Ventricular Function, Left</subject><subject>Vertebrates: cardiovascular system</subject><issn>0140-0118</issn><issn>1741-0444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0U1LxDAQBuAgiq6rF3-AFBEVoTrTTNLEm4pfsOBFzyWbplLpx5q0gv_eyC4oHpQ5zGEe3sO8jO0hnCFAfn51C5lAzrlaYxPMCVMgonU2ASRIAVFtse0QXgEyFBltsi0EqWWOMGGXM1cN6bvrBl_bsTE-WXgXwuhd8uJNWcdDSC4Sk9i-XYyD82nbl65JQt1GPdR9t8M2KtMEt7vaU_Z8e_N0fZ_OHu8eri9nqSUuhrSy1mopZG6AzyvjdJkrAaAMr4TWSFKqUiIasphrJQSY0lopzNy6XGZzyafseJm78P3b6MJQtHWwrmlM5_oxFLkgpYhnOsqjP6XURJxr-hdmyCVo-IInf0KMz4yZWZwpO_hFX_vRd_EzhSSFpCSIiE6XyPo-BO-qYuHr1viPAqH46rT47jTi_VXiOG9d-YMuS4zgcAVMsKapvOlsHb6dzpQk4J8Yj6Wk</recordid><startdate>19990701</startdate><enddate>19990701</enddate><creator>VERDONCK, P</creator><creator>VIERENDEELS, J</creator><creator>RIEMSLAGH, K</creator><creator>DICK, E</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7SC</scope><scope>7TB</scope><scope>7TS</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>L.-</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>19990701</creationdate><title>Left-ventricular pressure gradients : a computer-model simulation</title><author>VERDONCK, P ; VIERENDEELS, J ; RIEMSLAGH, K ; DICK, E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-fccc96567a03bfae9d785008a3f59914668d611a4c1798550adcc65abce762b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Biological and medical sciences</topic><topic>Blood</topic><topic>Blood Pressure</topic><topic>Boundaries</topic><topic>Color</topic><topic>Colour</topic><topic>Computation</topic><topic>Computer Simulation</topic><topic>Computerized, statistical medical data processing and models in biomedicine</topic><topic>Echocardiography</topic><topic>Elasticity</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Heart</topic><topic>Hemodynamics</topic><topic>Humans</topic><topic>Mathematical models</topic><topic>Medical sciences</topic><topic>Models and simulation</topic><topic>Models, Cardiovascular</topic><topic>Muscle</topic><topic>Pressure effects</topic><topic>Pressure gradients</topic><topic>Pressure measurement</topic><topic>Pressure waves</topic><topic>Studies</topic><topic>Time delay</topic><topic>Velocity</topic><topic>Ventricular Function, Left</topic><topic>Vertebrates: cardiovascular system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>VERDONCK, P</creatorcontrib><creatorcontrib>VIERENDEELS, J</creatorcontrib><creatorcontrib>RIEMSLAGH, K</creatorcontrib><creatorcontrib>DICK, E</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Medical &amp; biological engineering &amp; computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>VERDONCK, P</au><au>VIERENDEELS, J</au><au>RIEMSLAGH, K</au><au>DICK, E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Left-ventricular pressure gradients : a computer-model simulation</atitle><jtitle>Medical &amp; biological engineering &amp; computing</jtitle><addtitle>Med Biol Eng Comput</addtitle><date>1999-07-01</date><risdate>1999</risdate><volume>37</volume><issue>4</issue><spage>511</spage><epage>516</epage><pages>511-516</pages><issn>0140-0118</issn><eissn>1741-0444</eissn><abstract>Both invasive left-ventricular pressure measurements and non-invasive colour M-mode echographic measurements have shown the existence of intraventricular pressure gradients (IVPGs) during early filling. The mechanisms responsible for these IVPG cannot be completely explained by the experiments. Therefore a one-dimensional numerical model is developed and validated. The model describes filling (both velocities and pressures) along a left ventricular (LV) base-apex axis. Blood-wall interaction in the left ventricle with moving boundaries is taken into account. The computational results for a canine heart indicate that the observed IVPGs during filling are the consequence of a complex interaction between, on the one hand, pressure waves travelling in the LV and, on the other hand, LV geometry, relaxation and compliance. The computational results indicate the pressure dependency of wavespeed (0.77-1.90 m-1 s) for different mean intraventricular pressures (0.88-5.00 mmHg) and IVPGs up to 2 mmHg, independent of the ratio of end systolic volume and equilibrium volume. Increasing relaxation rate not only decreases minimum basal pressure (2.8 instead of 3.6 mmHg) but also has a strong influence on the time delay between the minimum basal and apical pressures (14 ms instead of 49 ms). The results sustain the hypothesis that pressure-wave propagation determines IVPGs and that IVPGs are no proof of elastic recoil.</abstract><cop>Heidelberg</cop><pub>Springer</pub><pmid>10696710</pmid><doi>10.1007/BF02513338</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0140-0118
ispartof Medical & biological engineering & computing, 1999-07, Vol.37 (4), p.511-516
issn 0140-0118
1741-0444
language eng
recordid cdi_proquest_miscellaneous_754884329
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Biological and medical sciences
Blood
Blood Pressure
Boundaries
Color
Colour
Computation
Computer Simulation
Computerized, statistical medical data processing and models in biomedicine
Echocardiography
Elasticity
Fundamental and applied biological sciences. Psychology
Heart
Hemodynamics
Humans
Mathematical models
Medical sciences
Models and simulation
Models, Cardiovascular
Muscle
Pressure effects
Pressure gradients
Pressure measurement
Pressure waves
Studies
Time delay
Velocity
Ventricular Function, Left
Vertebrates: cardiovascular system
title Left-ventricular pressure gradients : a computer-model simulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T09%3A14%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Left-ventricular%20pressure%20gradients%20:%20a%20computer-model%20simulation&rft.jtitle=Medical%20&%20biological%20engineering%20&%20computing&rft.au=VERDONCK,%20P&rft.date=1999-07-01&rft.volume=37&rft.issue=4&rft.spage=511&rft.epage=516&rft.pages=511-516&rft.issn=0140-0118&rft.eissn=1741-0444&rft_id=info:doi/10.1007/BF02513338&rft_dat=%3Cproquest_cross%3E754884329%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=648148605&rft_id=info:pmid/10696710&rfr_iscdi=true