The Glutamate Effect on DNA Binding by Pol I DNA Polymerases: Osmotic Stress and the Effective Reversal of Salt Linkage

The significant enhancing effect of glutamate on DNA binding by Escherichia coli nucleic acid binding proteins has been extensively documented. Glutamate has also often been observed to reduce the apparent linked ion release (Δnions) upon DNA binding. In this study, it is shown that the Klenow and K...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular biology 2010-08, Vol.401 (2), p.223-238
Hauptverfasser: Deredge, Daniel J., Baker, John T., Datta, Kausiki, LiCata, Vince J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 238
container_issue 2
container_start_page 223
container_title Journal of molecular biology
container_volume 401
creator Deredge, Daniel J.
Baker, John T.
Datta, Kausiki
LiCata, Vince J.
description The significant enhancing effect of glutamate on DNA binding by Escherichia coli nucleic acid binding proteins has been extensively documented. Glutamate has also often been observed to reduce the apparent linked ion release (Δnions) upon DNA binding. In this study, it is shown that the Klenow and Klentaq large fragments of the Type I DNA polymerases from E. coli and Thermus aquaticus both display enhanced DNA binding affinity in the presence of glutamate versus chloride. Across the relatively narrow salt concentration ranges often used to obtain salt linkage data, Klenow displays an apparently decreased Δnions in the presence of Kglutamate, while Klentaq appears not to display an anion-specific effect on Δnions. Osmotic stress experiments reveal that DNA binding by Klenow and Klentaq is associated with the release of ∼500 to 600 waters in the presence of KCl. For both proteins, replacing chloride with glutamate results in a 70% reduction in the osmotic-stress-measured hydration change associated with DNA binding (to ∼150–200 waters released), suggesting that glutamate plays a significant osmotic role. Measurements of the salt–DNA binding linkages were extended up to 2.5 M Kglutamate to further examine this osmotic effect of glutamate, and it is observed that a reversal of the salt linkage occurs above 800 mM for both Klenow and Klentaq. Salt-addition titrations confirm that an increase of [Kglutamate] beyond 1 M results in rebinding of salt-displaced polymerase to DNA. These data represent a rare documentation of a reversed ion linkage for a protein–DNA interaction (i.e., enhanced binding as salt concentration increases). Nonlinear linkage analysis indicates that this unusual behavior can be quantitatively accounted for by a shifting balance of ionic and osmotic effects as [Kglutamate] is increased. These results are predicted to be general for protein–DNA interactions in glutamate salts.
doi_str_mv 10.1016/j.jmb.2010.06.009
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_754880643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002228361000625X</els_id><sourcerecordid>754880643</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-39ce99f81e8b2091e55f8669083fc09b0dfdb8cbe9fa20394148cc6ab2eba17b3</originalsourceid><addsrcrecordid>eNqFkU1TFDEQhlOWlKzID_Bi5eZplk4yk030hIhA1ZZYAudUkulA1vmAZHat_fcGFjzqqT_q6ffQDyHvGcwZMHm0mq96N-dQZpBzAP2KzBgoXSkp1GsyA-C84krIffI25xUANKJWb8g-h6ZRbCFn5Pf1HdKzbj3Z3k5IT0NAP9FxoF-_H9MvcWjjcEvdlv4YO3rxtCzdtsdkM-ZP9DL34xQ9vZoS5kzt0NLp7iUmbpD-xA2mbDs6Bnplu4ku4_DL3uI7shdsl_HwuR6Qm2-n1yfn1fLy7OLkeFl5oeqpEtqj1kExVI6DZtg0QUmpQYngQTtoQ-uUd6iD5SB0zWrlvbSOo7Ns4cQB-bjLvU_jwxrzZPqYPXadHXBcZ7NoaqVA1uL_ZK20lKrhhWQ70qcx54TB3KfY27Q1DMyjGLMyRYx5FGNAmiKm3Hx4Tl-7Htu_Fy8mCvB5B2D5xiZiMtlHHDy2MZVfmnaM_4j_A1LvnS0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>748966852</pqid></control><display><type>article</type><title>The Glutamate Effect on DNA Binding by Pol I DNA Polymerases: Osmotic Stress and the Effective Reversal of Salt Linkage</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Deredge, Daniel J. ; Baker, John T. ; Datta, Kausiki ; LiCata, Vince J.</creator><creatorcontrib>Deredge, Daniel J. ; Baker, John T. ; Datta, Kausiki ; LiCata, Vince J.</creatorcontrib><description>The significant enhancing effect of glutamate on DNA binding by Escherichia coli nucleic acid binding proteins has been extensively documented. Glutamate has also often been observed to reduce the apparent linked ion release (Δnions) upon DNA binding. In this study, it is shown that the Klenow and Klentaq large fragments of the Type I DNA polymerases from E. coli and Thermus aquaticus both display enhanced DNA binding affinity in the presence of glutamate versus chloride. Across the relatively narrow salt concentration ranges often used to obtain salt linkage data, Klenow displays an apparently decreased Δnions in the presence of Kglutamate, while Klentaq appears not to display an anion-specific effect on Δnions. Osmotic stress experiments reveal that DNA binding by Klenow and Klentaq is associated with the release of ∼500 to 600 waters in the presence of KCl. For both proteins, replacing chloride with glutamate results in a 70% reduction in the osmotic-stress-measured hydration change associated with DNA binding (to ∼150–200 waters released), suggesting that glutamate plays a significant osmotic role. Measurements of the salt–DNA binding linkages were extended up to 2.5 M Kglutamate to further examine this osmotic effect of glutamate, and it is observed that a reversal of the salt linkage occurs above 800 mM for both Klenow and Klentaq. Salt-addition titrations confirm that an increase of [Kglutamate] beyond 1 M results in rebinding of salt-displaced polymerase to DNA. These data represent a rare documentation of a reversed ion linkage for a protein–DNA interaction (i.e., enhanced binding as salt concentration increases). Nonlinear linkage analysis indicates that this unusual behavior can be quantitatively accounted for by a shifting balance of ionic and osmotic effects as [Kglutamate] is increased. These results are predicted to be general for protein–DNA interactions in glutamate salts.</description><identifier>ISSN: 0022-2836</identifier><identifier>EISSN: 1089-8638</identifier><identifier>DOI: 10.1016/j.jmb.2010.06.009</identifier><identifier>PMID: 20558176</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Base Sequence ; Chlorides - metabolism ; DNA Polymerase I - metabolism ; DNA, Bacterial - genetics ; DNA, Bacterial - metabolism ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Fluorescence Polarization ; Glutamates - metabolism ; Glutamic Acid - metabolism ; Kinetics ; Klenow ; Osmotic Pressure ; Potassium Chloride - metabolism ; preferential hydration ; protein–DNA interaction ; Salts - metabolism ; Taq polymerase ; Taq Polymerase - metabolism ; thermodynamic linkage ; Thermodynamics ; Thermus aquaticus ; Water - metabolism</subject><ispartof>Journal of molecular biology, 2010-08, Vol.401 (2), p.223-238</ispartof><rights>2010 Elsevier Ltd</rights><rights>Copyright (c) 2010 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-39ce99f81e8b2091e55f8669083fc09b0dfdb8cbe9fa20394148cc6ab2eba17b3</citedby><cites>FETCH-LOGICAL-c384t-39ce99f81e8b2091e55f8669083fc09b0dfdb8cbe9fa20394148cc6ab2eba17b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S002228361000625X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20558176$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Deredge, Daniel J.</creatorcontrib><creatorcontrib>Baker, John T.</creatorcontrib><creatorcontrib>Datta, Kausiki</creatorcontrib><creatorcontrib>LiCata, Vince J.</creatorcontrib><title>The Glutamate Effect on DNA Binding by Pol I DNA Polymerases: Osmotic Stress and the Effective Reversal of Salt Linkage</title><title>Journal of molecular biology</title><addtitle>J Mol Biol</addtitle><description>The significant enhancing effect of glutamate on DNA binding by Escherichia coli nucleic acid binding proteins has been extensively documented. Glutamate has also often been observed to reduce the apparent linked ion release (Δnions) upon DNA binding. In this study, it is shown that the Klenow and Klentaq large fragments of the Type I DNA polymerases from E. coli and Thermus aquaticus both display enhanced DNA binding affinity in the presence of glutamate versus chloride. Across the relatively narrow salt concentration ranges often used to obtain salt linkage data, Klenow displays an apparently decreased Δnions in the presence of Kglutamate, while Klentaq appears not to display an anion-specific effect on Δnions. Osmotic stress experiments reveal that DNA binding by Klenow and Klentaq is associated with the release of ∼500 to 600 waters in the presence of KCl. For both proteins, replacing chloride with glutamate results in a 70% reduction in the osmotic-stress-measured hydration change associated with DNA binding (to ∼150–200 waters released), suggesting that glutamate plays a significant osmotic role. Measurements of the salt–DNA binding linkages were extended up to 2.5 M Kglutamate to further examine this osmotic effect of glutamate, and it is observed that a reversal of the salt linkage occurs above 800 mM for both Klenow and Klentaq. Salt-addition titrations confirm that an increase of [Kglutamate] beyond 1 M results in rebinding of salt-displaced polymerase to DNA. These data represent a rare documentation of a reversed ion linkage for a protein–DNA interaction (i.e., enhanced binding as salt concentration increases). Nonlinear linkage analysis indicates that this unusual behavior can be quantitatively accounted for by a shifting balance of ionic and osmotic effects as [Kglutamate] is increased. These results are predicted to be general for protein–DNA interactions in glutamate salts.</description><subject>Base Sequence</subject><subject>Chlorides - metabolism</subject><subject>DNA Polymerase I - metabolism</subject><subject>DNA, Bacterial - genetics</subject><subject>DNA, Bacterial - metabolism</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Fluorescence Polarization</subject><subject>Glutamates - metabolism</subject><subject>Glutamic Acid - metabolism</subject><subject>Kinetics</subject><subject>Klenow</subject><subject>Osmotic Pressure</subject><subject>Potassium Chloride - metabolism</subject><subject>preferential hydration</subject><subject>protein–DNA interaction</subject><subject>Salts - metabolism</subject><subject>Taq polymerase</subject><subject>Taq Polymerase - metabolism</subject><subject>thermodynamic linkage</subject><subject>Thermodynamics</subject><subject>Thermus aquaticus</subject><subject>Water - metabolism</subject><issn>0022-2836</issn><issn>1089-8638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1TFDEQhlOWlKzID_Bi5eZplk4yk030hIhA1ZZYAudUkulA1vmAZHat_fcGFjzqqT_q6ffQDyHvGcwZMHm0mq96N-dQZpBzAP2KzBgoXSkp1GsyA-C84krIffI25xUANKJWb8g-h6ZRbCFn5Pf1HdKzbj3Z3k5IT0NAP9FxoF-_H9MvcWjjcEvdlv4YO3rxtCzdtsdkM-ZP9DL34xQ9vZoS5kzt0NLp7iUmbpD-xA2mbDs6Bnplu4ku4_DL3uI7shdsl_HwuR6Qm2-n1yfn1fLy7OLkeFl5oeqpEtqj1kExVI6DZtg0QUmpQYngQTtoQ-uUd6iD5SB0zWrlvbSOo7Ns4cQB-bjLvU_jwxrzZPqYPXadHXBcZ7NoaqVA1uL_ZK20lKrhhWQ70qcx54TB3KfY27Q1DMyjGLMyRYx5FGNAmiKm3Hx4Tl-7Htu_Fy8mCvB5B2D5xiZiMtlHHDy2MZVfmnaM_4j_A1LvnS0</recordid><startdate>20100813</startdate><enddate>20100813</enddate><creator>Deredge, Daniel J.</creator><creator>Baker, John T.</creator><creator>Datta, Kausiki</creator><creator>LiCata, Vince J.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TM</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope></search><sort><creationdate>20100813</creationdate><title>The Glutamate Effect on DNA Binding by Pol I DNA Polymerases: Osmotic Stress and the Effective Reversal of Salt Linkage</title><author>Deredge, Daniel J. ; Baker, John T. ; Datta, Kausiki ; LiCata, Vince J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-39ce99f81e8b2091e55f8669083fc09b0dfdb8cbe9fa20394148cc6ab2eba17b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Base Sequence</topic><topic>Chlorides - metabolism</topic><topic>DNA Polymerase I - metabolism</topic><topic>DNA, Bacterial - genetics</topic><topic>DNA, Bacterial - metabolism</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Fluorescence Polarization</topic><topic>Glutamates - metabolism</topic><topic>Glutamic Acid - metabolism</topic><topic>Kinetics</topic><topic>Klenow</topic><topic>Osmotic Pressure</topic><topic>Potassium Chloride - metabolism</topic><topic>preferential hydration</topic><topic>protein–DNA interaction</topic><topic>Salts - metabolism</topic><topic>Taq polymerase</topic><topic>Taq Polymerase - metabolism</topic><topic>thermodynamic linkage</topic><topic>Thermodynamics</topic><topic>Thermus aquaticus</topic><topic>Water - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deredge, Daniel J.</creatorcontrib><creatorcontrib>Baker, John T.</creatorcontrib><creatorcontrib>Datta, Kausiki</creatorcontrib><creatorcontrib>LiCata, Vince J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deredge, Daniel J.</au><au>Baker, John T.</au><au>Datta, Kausiki</au><au>LiCata, Vince J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Glutamate Effect on DNA Binding by Pol I DNA Polymerases: Osmotic Stress and the Effective Reversal of Salt Linkage</atitle><jtitle>Journal of molecular biology</jtitle><addtitle>J Mol Biol</addtitle><date>2010-08-13</date><risdate>2010</risdate><volume>401</volume><issue>2</issue><spage>223</spage><epage>238</epage><pages>223-238</pages><issn>0022-2836</issn><eissn>1089-8638</eissn><abstract>The significant enhancing effect of glutamate on DNA binding by Escherichia coli nucleic acid binding proteins has been extensively documented. Glutamate has also often been observed to reduce the apparent linked ion release (Δnions) upon DNA binding. In this study, it is shown that the Klenow and Klentaq large fragments of the Type I DNA polymerases from E. coli and Thermus aquaticus both display enhanced DNA binding affinity in the presence of glutamate versus chloride. Across the relatively narrow salt concentration ranges often used to obtain salt linkage data, Klenow displays an apparently decreased Δnions in the presence of Kglutamate, while Klentaq appears not to display an anion-specific effect on Δnions. Osmotic stress experiments reveal that DNA binding by Klenow and Klentaq is associated with the release of ∼500 to 600 waters in the presence of KCl. For both proteins, replacing chloride with glutamate results in a 70% reduction in the osmotic-stress-measured hydration change associated with DNA binding (to ∼150–200 waters released), suggesting that glutamate plays a significant osmotic role. Measurements of the salt–DNA binding linkages were extended up to 2.5 M Kglutamate to further examine this osmotic effect of glutamate, and it is observed that a reversal of the salt linkage occurs above 800 mM for both Klenow and Klentaq. Salt-addition titrations confirm that an increase of [Kglutamate] beyond 1 M results in rebinding of salt-displaced polymerase to DNA. These data represent a rare documentation of a reversed ion linkage for a protein–DNA interaction (i.e., enhanced binding as salt concentration increases). Nonlinear linkage analysis indicates that this unusual behavior can be quantitatively accounted for by a shifting balance of ionic and osmotic effects as [Kglutamate] is increased. These results are predicted to be general for protein–DNA interactions in glutamate salts.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>20558176</pmid><doi>10.1016/j.jmb.2010.06.009</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2836
ispartof Journal of molecular biology, 2010-08, Vol.401 (2), p.223-238
issn 0022-2836
1089-8638
language eng
recordid cdi_proquest_miscellaneous_754880643
source MEDLINE; Elsevier ScienceDirect Journals
subjects Base Sequence
Chlorides - metabolism
DNA Polymerase I - metabolism
DNA, Bacterial - genetics
DNA, Bacterial - metabolism
Escherichia coli
Escherichia coli - genetics
Escherichia coli - metabolism
Fluorescence Polarization
Glutamates - metabolism
Glutamic Acid - metabolism
Kinetics
Klenow
Osmotic Pressure
Potassium Chloride - metabolism
preferential hydration
protein–DNA interaction
Salts - metabolism
Taq polymerase
Taq Polymerase - metabolism
thermodynamic linkage
Thermodynamics
Thermus aquaticus
Water - metabolism
title The Glutamate Effect on DNA Binding by Pol I DNA Polymerases: Osmotic Stress and the Effective Reversal of Salt Linkage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T12%3A28%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Glutamate%20Effect%20on%20DNA%20Binding%20by%20Pol%20I%20DNA%20Polymerases:%20Osmotic%20Stress%20and%20the%20Effective%20Reversal%20of%20Salt%20Linkage&rft.jtitle=Journal%20of%20molecular%20biology&rft.au=Deredge,%20Daniel%20J.&rft.date=2010-08-13&rft.volume=401&rft.issue=2&rft.spage=223&rft.epage=238&rft.pages=223-238&rft.issn=0022-2836&rft.eissn=1089-8638&rft_id=info:doi/10.1016/j.jmb.2010.06.009&rft_dat=%3Cproquest_cross%3E754880643%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=748966852&rft_id=info:pmid/20558176&rft_els_id=S002228361000625X&rfr_iscdi=true