Designing and Optimizing a Neural Network for the Modeling of a Fluidized-Bed Drying Process

A wet granular solid material (alperujo, a waste from the olive mills) was dried using a fluidized-bed dryer (FBD) system. The drying curves, data of moisture vs time, were fitted to an exponential equation and then interpolated and used as learning data for an artificial neural network (ANN). The t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2002-05, Vol.41 (9), p.2262-2269
Hauptverfasser: Castellanos, José A, Palancar, María C, Aragón, José M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2269
container_issue 9
container_start_page 2262
container_title Industrial & engineering chemistry research
container_volume 41
creator Castellanos, José A
Palancar, María C
Aragón, José M
description A wet granular solid material (alperujo, a waste from the olive mills) was dried using a fluidized-bed dryer (FBD) system. The drying curves, data of moisture vs time, were fitted to an exponential equation and then interpolated and used as learning data for an artificial neural network (ANN). The target is to predict the moisture of the solid from operating conditions data. The ANN has three layers, with four inputs, four hidden neurons, and one output. Several criteria are given to improve the ANN training, e.g., selecting the data sets (number of data and order in which they are shown to the network), tuning the learning coefficient (set at 1.5), and optimizing the sigmoid function (two adjustable parameters, α and β, set at 3 and 9). The optimized ANN can predict the evolution of the moisture of the solid with a model error of ±1.57%.
doi_str_mv 10.1021/ie000950t
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_754877160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>754877160</sourcerecordid><originalsourceid>FETCH-LOGICAL-a394t-80f686e247efe9668edcd5ab678827dbb0304b334adc58178a9261669c0d69753</originalsourceid><addsrcrecordid>eNpt0MtKAzEUBuAgCtbqwjeYjYiL0WQmt1mqtVXwhlZwIYQ0OaOp00lNZvDy9E6t2I2rQzjf-QM_QrsEHxKckSMHGOOC4WYN9QjLcMowZeuoh6WUKZOSbaKtGKcdYozSHnoaQHTPtaufE13b5GbeuJn7-nkm19AGXXWjeffhNSl9SJoXSK68hWohfNmhYdU6677Apidgk0H4XGxugzcQ4zbaKHUVYed39tHD8Gx8ep5e3owuTo8vU50XtEklLrnkkFEBJRScS7DGMj3hQspM2MkE55hO8pxqa5gkQuoi44TzwmDLC8HyPtpf5s6Df2shNmrmooGq0jX4NirBqBSCcNzJg6U0wccYoFTz4GY6fCqC1aJA9VdgZ_d-U3U0uiqDro2LqwNKJOWEdi5dOhcb-Pjb6_CquMgFU-Pbe5Xh4eNoXDyqu1WuNlFNfRvqrpt__v8G7qqKHA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>754877160</pqid></control><display><type>article</type><title>Designing and Optimizing a Neural Network for the Modeling of a Fluidized-Bed Drying Process</title><source>ACS Publications</source><creator>Castellanos, José A ; Palancar, María C ; Aragón, José M</creator><creatorcontrib>Castellanos, José A ; Palancar, María C ; Aragón, José M</creatorcontrib><description>A wet granular solid material (alperujo, a waste from the olive mills) was dried using a fluidized-bed dryer (FBD) system. The drying curves, data of moisture vs time, were fitted to an exponential equation and then interpolated and used as learning data for an artificial neural network (ANN). The target is to predict the moisture of the solid from operating conditions data. The ANN has three layers, with four inputs, four hidden neurons, and one output. Several criteria are given to improve the ANN training, e.g., selecting the data sets (number of data and order in which they are shown to the network), tuning the learning coefficient (set at 1.5), and optimizing the sigmoid function (two adjustable parameters, α and β, set at 3 and 9). The optimized ANN can predict the evolution of the moisture of the solid with a model error of ±1.57%.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/ie000950t</identifier><identifier>CODEN: IECRED</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Agriculture, rearing and food industries wastes ; Applied sciences ; Biological and medical sciences ; Devices using thermal energy ; Dryers ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Food industries ; Fundamental and applied biological sciences. Psychology ; Pollution ; Use and upgrading of agricultural and food by-products. Biotechnology ; Wastes</subject><ispartof>Industrial &amp; engineering chemistry research, 2002-05, Vol.41 (9), p.2262-2269</ispartof><rights>Copyright © 2002 American Chemical Society</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a394t-80f686e247efe9668edcd5ab678827dbb0304b334adc58178a9261669c0d69753</citedby><cites>FETCH-LOGICAL-a394t-80f686e247efe9668edcd5ab678827dbb0304b334adc58178a9261669c0d69753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ie000950t$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ie000950t$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14184614$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Castellanos, José A</creatorcontrib><creatorcontrib>Palancar, María C</creatorcontrib><creatorcontrib>Aragón, José M</creatorcontrib><title>Designing and Optimizing a Neural Network for the Modeling of a Fluidized-Bed Drying Process</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>A wet granular solid material (alperujo, a waste from the olive mills) was dried using a fluidized-bed dryer (FBD) system. The drying curves, data of moisture vs time, were fitted to an exponential equation and then interpolated and used as learning data for an artificial neural network (ANN). The target is to predict the moisture of the solid from operating conditions data. The ANN has three layers, with four inputs, four hidden neurons, and one output. Several criteria are given to improve the ANN training, e.g., selecting the data sets (number of data and order in which they are shown to the network), tuning the learning coefficient (set at 1.5), and optimizing the sigmoid function (two adjustable parameters, α and β, set at 3 and 9). The optimized ANN can predict the evolution of the moisture of the solid with a model error of ±1.57%.</description><subject>Agriculture, rearing and food industries wastes</subject><subject>Applied sciences</subject><subject>Biological and medical sciences</subject><subject>Devices using thermal energy</subject><subject>Dryers</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Food industries</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Pollution</subject><subject>Use and upgrading of agricultural and food by-products. Biotechnology</subject><subject>Wastes</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNpt0MtKAzEUBuAgCtbqwjeYjYiL0WQmt1mqtVXwhlZwIYQ0OaOp00lNZvDy9E6t2I2rQzjf-QM_QrsEHxKckSMHGOOC4WYN9QjLcMowZeuoh6WUKZOSbaKtGKcdYozSHnoaQHTPtaufE13b5GbeuJn7-nkm19AGXXWjeffhNSl9SJoXSK68hWohfNmhYdU6677Apidgk0H4XGxugzcQ4zbaKHUVYed39tHD8Gx8ep5e3owuTo8vU50XtEklLrnkkFEBJRScS7DGMj3hQspM2MkE55hO8pxqa5gkQuoi44TzwmDLC8HyPtpf5s6Df2shNmrmooGq0jX4NirBqBSCcNzJg6U0wccYoFTz4GY6fCqC1aJA9VdgZ_d-U3U0uiqDro2LqwNKJOWEdi5dOhcb-Pjb6_CquMgFU-Pbe5Xh4eNoXDyqu1WuNlFNfRvqrpt__v8G7qqKHA</recordid><startdate>20020501</startdate><enddate>20020501</enddate><creator>Castellanos, José A</creator><creator>Palancar, María C</creator><creator>Aragón, José M</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope></search><sort><creationdate>20020501</creationdate><title>Designing and Optimizing a Neural Network for the Modeling of a Fluidized-Bed Drying Process</title><author>Castellanos, José A ; Palancar, María C ; Aragón, José M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a394t-80f686e247efe9668edcd5ab678827dbb0304b334adc58178a9261669c0d69753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Agriculture, rearing and food industries wastes</topic><topic>Applied sciences</topic><topic>Biological and medical sciences</topic><topic>Devices using thermal energy</topic><topic>Dryers</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Food industries</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Pollution</topic><topic>Use and upgrading of agricultural and food by-products. Biotechnology</topic><topic>Wastes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castellanos, José A</creatorcontrib><creatorcontrib>Palancar, María C</creatorcontrib><creatorcontrib>Aragón, José M</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castellanos, José A</au><au>Palancar, María C</au><au>Aragón, José M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Designing and Optimizing a Neural Network for the Modeling of a Fluidized-Bed Drying Process</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2002-05-01</date><risdate>2002</risdate><volume>41</volume><issue>9</issue><spage>2262</spage><epage>2269</epage><pages>2262-2269</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><coden>IECRED</coden><abstract>A wet granular solid material (alperujo, a waste from the olive mills) was dried using a fluidized-bed dryer (FBD) system. The drying curves, data of moisture vs time, were fitted to an exponential equation and then interpolated and used as learning data for an artificial neural network (ANN). The target is to predict the moisture of the solid from operating conditions data. The ANN has three layers, with four inputs, four hidden neurons, and one output. Several criteria are given to improve the ANN training, e.g., selecting the data sets (number of data and order in which they are shown to the network), tuning the learning coefficient (set at 1.5), and optimizing the sigmoid function (two adjustable parameters, α and β, set at 3 and 9). The optimized ANN can predict the evolution of the moisture of the solid with a model error of ±1.57%.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ie000950t</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 2002-05, Vol.41 (9), p.2262-2269
issn 0888-5885
1520-5045
language eng
recordid cdi_proquest_miscellaneous_754877160
source ACS Publications
subjects Agriculture, rearing and food industries wastes
Applied sciences
Biological and medical sciences
Devices using thermal energy
Dryers
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Food industries
Fundamental and applied biological sciences. Psychology
Pollution
Use and upgrading of agricultural and food by-products. Biotechnology
Wastes
title Designing and Optimizing a Neural Network for the Modeling of a Fluidized-Bed Drying Process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T13%3A12%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Designing%20and%20Optimizing%20a%20Neural%20Network%20for%20the%20Modeling%20of%20a%20Fluidized-Bed%20Drying%20Process&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Castellanos,%20Jos%C3%A9%20A&rft.date=2002-05-01&rft.volume=41&rft.issue=9&rft.spage=2262&rft.epage=2269&rft.pages=2262-2269&rft.issn=0888-5885&rft.eissn=1520-5045&rft.coden=IECRED&rft_id=info:doi/10.1021/ie000950t&rft_dat=%3Cproquest_cross%3E754877160%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=754877160&rft_id=info:pmid/&rfr_iscdi=true