Designing and Optimizing a Neural Network for the Modeling of a Fluidized-Bed Drying Process
A wet granular solid material (alperujo, a waste from the olive mills) was dried using a fluidized-bed dryer (FBD) system. The drying curves, data of moisture vs time, were fitted to an exponential equation and then interpolated and used as learning data for an artificial neural network (ANN). The t...
Gespeichert in:
Veröffentlicht in: | Industrial & engineering chemistry research 2002-05, Vol.41 (9), p.2262-2269 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2269 |
---|---|
container_issue | 9 |
container_start_page | 2262 |
container_title | Industrial & engineering chemistry research |
container_volume | 41 |
creator | Castellanos, José A Palancar, María C Aragón, José M |
description | A wet granular solid material (alperujo, a waste from the olive mills) was dried using a fluidized-bed dryer (FBD) system. The drying curves, data of moisture vs time, were fitted to an exponential equation and then interpolated and used as learning data for an artificial neural network (ANN). The target is to predict the moisture of the solid from operating conditions data. The ANN has three layers, with four inputs, four hidden neurons, and one output. Several criteria are given to improve the ANN training, e.g., selecting the data sets (number of data and order in which they are shown to the network), tuning the learning coefficient (set at 1.5), and optimizing the sigmoid function (two adjustable parameters, α and β, set at 3 and 9). The optimized ANN can predict the evolution of the moisture of the solid with a model error of ±1.57%. |
doi_str_mv | 10.1021/ie000950t |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_754877160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>754877160</sourcerecordid><originalsourceid>FETCH-LOGICAL-a394t-80f686e247efe9668edcd5ab678827dbb0304b334adc58178a9261669c0d69753</originalsourceid><addsrcrecordid>eNpt0MtKAzEUBuAgCtbqwjeYjYiL0WQmt1mqtVXwhlZwIYQ0OaOp00lNZvDy9E6t2I2rQzjf-QM_QrsEHxKckSMHGOOC4WYN9QjLcMowZeuoh6WUKZOSbaKtGKcdYozSHnoaQHTPtaufE13b5GbeuJn7-nkm19AGXXWjeffhNSl9SJoXSK68hWohfNmhYdU6677Apidgk0H4XGxugzcQ4zbaKHUVYed39tHD8Gx8ep5e3owuTo8vU50XtEklLrnkkFEBJRScS7DGMj3hQspM2MkE55hO8pxqa5gkQuoi44TzwmDLC8HyPtpf5s6Df2shNmrmooGq0jX4NirBqBSCcNzJg6U0wccYoFTz4GY6fCqC1aJA9VdgZ_d-U3U0uiqDro2LqwNKJOWEdi5dOhcb-Pjb6_CquMgFU-Pbe5Xh4eNoXDyqu1WuNlFNfRvqrpt__v8G7qqKHA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>754877160</pqid></control><display><type>article</type><title>Designing and Optimizing a Neural Network for the Modeling of a Fluidized-Bed Drying Process</title><source>ACS Publications</source><creator>Castellanos, José A ; Palancar, María C ; Aragón, José M</creator><creatorcontrib>Castellanos, José A ; Palancar, María C ; Aragón, José M</creatorcontrib><description>A wet granular solid material (alperujo, a waste from the olive mills) was dried using a fluidized-bed dryer (FBD) system. The drying curves, data of moisture vs time, were fitted to an exponential equation and then interpolated and used as learning data for an artificial neural network (ANN). The target is to predict the moisture of the solid from operating conditions data. The ANN has three layers, with four inputs, four hidden neurons, and one output. Several criteria are given to improve the ANN training, e.g., selecting the data sets (number of data and order in which they are shown to the network), tuning the learning coefficient (set at 1.5), and optimizing the sigmoid function (two adjustable parameters, α and β, set at 3 and 9). The optimized ANN can predict the evolution of the moisture of the solid with a model error of ±1.57%.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/ie000950t</identifier><identifier>CODEN: IECRED</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Agriculture, rearing and food industries wastes ; Applied sciences ; Biological and medical sciences ; Devices using thermal energy ; Dryers ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Food industries ; Fundamental and applied biological sciences. Psychology ; Pollution ; Use and upgrading of agricultural and food by-products. Biotechnology ; Wastes</subject><ispartof>Industrial & engineering chemistry research, 2002-05, Vol.41 (9), p.2262-2269</ispartof><rights>Copyright © 2002 American Chemical Society</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a394t-80f686e247efe9668edcd5ab678827dbb0304b334adc58178a9261669c0d69753</citedby><cites>FETCH-LOGICAL-a394t-80f686e247efe9668edcd5ab678827dbb0304b334adc58178a9261669c0d69753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ie000950t$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ie000950t$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14184614$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Castellanos, José A</creatorcontrib><creatorcontrib>Palancar, María C</creatorcontrib><creatorcontrib>Aragón, José M</creatorcontrib><title>Designing and Optimizing a Neural Network for the Modeling of a Fluidized-Bed Drying Process</title><title>Industrial & engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>A wet granular solid material (alperujo, a waste from the olive mills) was dried using a fluidized-bed dryer (FBD) system. The drying curves, data of moisture vs time, were fitted to an exponential equation and then interpolated and used as learning data for an artificial neural network (ANN). The target is to predict the moisture of the solid from operating conditions data. The ANN has three layers, with four inputs, four hidden neurons, and one output. Several criteria are given to improve the ANN training, e.g., selecting the data sets (number of data and order in which they are shown to the network), tuning the learning coefficient (set at 1.5), and optimizing the sigmoid function (two adjustable parameters, α and β, set at 3 and 9). The optimized ANN can predict the evolution of the moisture of the solid with a model error of ±1.57%.</description><subject>Agriculture, rearing and food industries wastes</subject><subject>Applied sciences</subject><subject>Biological and medical sciences</subject><subject>Devices using thermal energy</subject><subject>Dryers</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Food industries</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Pollution</subject><subject>Use and upgrading of agricultural and food by-products. Biotechnology</subject><subject>Wastes</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNpt0MtKAzEUBuAgCtbqwjeYjYiL0WQmt1mqtVXwhlZwIYQ0OaOp00lNZvDy9E6t2I2rQzjf-QM_QrsEHxKckSMHGOOC4WYN9QjLcMowZeuoh6WUKZOSbaKtGKcdYozSHnoaQHTPtaufE13b5GbeuJn7-nkm19AGXXWjeffhNSl9SJoXSK68hWohfNmhYdU6677Apidgk0H4XGxugzcQ4zbaKHUVYed39tHD8Gx8ep5e3owuTo8vU50XtEklLrnkkFEBJRScS7DGMj3hQspM2MkE55hO8pxqa5gkQuoi44TzwmDLC8HyPtpf5s6Df2shNmrmooGq0jX4NirBqBSCcNzJg6U0wccYoFTz4GY6fCqC1aJA9VdgZ_d-U3U0uiqDro2LqwNKJOWEdi5dOhcb-Pjb6_CquMgFU-Pbe5Xh4eNoXDyqu1WuNlFNfRvqrpt__v8G7qqKHA</recordid><startdate>20020501</startdate><enddate>20020501</enddate><creator>Castellanos, José A</creator><creator>Palancar, María C</creator><creator>Aragón, José M</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope></search><sort><creationdate>20020501</creationdate><title>Designing and Optimizing a Neural Network for the Modeling of a Fluidized-Bed Drying Process</title><author>Castellanos, José A ; Palancar, María C ; Aragón, José M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a394t-80f686e247efe9668edcd5ab678827dbb0304b334adc58178a9261669c0d69753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Agriculture, rearing and food industries wastes</topic><topic>Applied sciences</topic><topic>Biological and medical sciences</topic><topic>Devices using thermal energy</topic><topic>Dryers</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Food industries</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Pollution</topic><topic>Use and upgrading of agricultural and food by-products. Biotechnology</topic><topic>Wastes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castellanos, José A</creatorcontrib><creatorcontrib>Palancar, María C</creatorcontrib><creatorcontrib>Aragón, José M</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Industrial & engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castellanos, José A</au><au>Palancar, María C</au><au>Aragón, José M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Designing and Optimizing a Neural Network for the Modeling of a Fluidized-Bed Drying Process</atitle><jtitle>Industrial & engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2002-05-01</date><risdate>2002</risdate><volume>41</volume><issue>9</issue><spage>2262</spage><epage>2269</epage><pages>2262-2269</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><coden>IECRED</coden><abstract>A wet granular solid material (alperujo, a waste from the olive mills) was dried using a fluidized-bed dryer (FBD) system. The drying curves, data of moisture vs time, were fitted to an exponential equation and then interpolated and used as learning data for an artificial neural network (ANN). The target is to predict the moisture of the solid from operating conditions data. The ANN has three layers, with four inputs, four hidden neurons, and one output. Several criteria are given to improve the ANN training, e.g., selecting the data sets (number of data and order in which they are shown to the network), tuning the learning coefficient (set at 1.5), and optimizing the sigmoid function (two adjustable parameters, α and β, set at 3 and 9). The optimized ANN can predict the evolution of the moisture of the solid with a model error of ±1.57%.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ie000950t</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-5885 |
ispartof | Industrial & engineering chemistry research, 2002-05, Vol.41 (9), p.2262-2269 |
issn | 0888-5885 1520-5045 |
language | eng |
recordid | cdi_proquest_miscellaneous_754877160 |
source | ACS Publications |
subjects | Agriculture, rearing and food industries wastes Applied sciences Biological and medical sciences Devices using thermal energy Dryers Energy Energy. Thermal use of fuels Exact sciences and technology Food industries Fundamental and applied biological sciences. Psychology Pollution Use and upgrading of agricultural and food by-products. Biotechnology Wastes |
title | Designing and Optimizing a Neural Network for the Modeling of a Fluidized-Bed Drying Process |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T13%3A12%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Designing%20and%20Optimizing%20a%20Neural%20Network%20for%20the%20Modeling%20of%20a%20Fluidized-Bed%20Drying%20Process&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Castellanos,%20Jos%C3%A9%20A&rft.date=2002-05-01&rft.volume=41&rft.issue=9&rft.spage=2262&rft.epage=2269&rft.pages=2262-2269&rft.issn=0888-5885&rft.eissn=1520-5045&rft.coden=IECRED&rft_id=info:doi/10.1021/ie000950t&rft_dat=%3Cproquest_cross%3E754877160%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=754877160&rft_id=info:pmid/&rfr_iscdi=true |