Thermal-mechanical behavior of oceanic transform faults: Implications for the spatial distribution of seismicity
To investigate the spatial distribution of earthquakes along oceanic transform faults, we utilize a 3‐D finite element model to calculate the mantle flow field and temperature structure associated with a ridge‐transform‐ridge system. The model incorporates a viscoplastic rheology to simulate brittle...
Gespeichert in:
Veröffentlicht in: | Geochemistry, geophysics, geosystems : G3 geophysics, geosystems : G3, 2010-07, Vol.11 (7), p.np-n/a |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 7 |
container_start_page | np |
container_title | Geochemistry, geophysics, geosystems : G3 |
container_volume | 11 |
creator | Roland, Emily Behn, Mark D. Hirth, Greg |
description | To investigate the spatial distribution of earthquakes along oceanic transform faults, we utilize a 3‐D finite element model to calculate the mantle flow field and temperature structure associated with a ridge‐transform‐ridge system. The model incorporates a viscoplastic rheology to simulate brittle failure in the lithosphere and a non‐Newtonian temperature‐dependent viscous flow law in the underlying mantle. We consider the effects of three key thermal and rheological feedbacks: (1) frictional weakening due to mantle alteration, (2) shear heating, and (3) hydrothermal circulation in the shallow lithosphere. Of these effects, the thermal structure is most strongly influenced by hydrothermal cooling. We quantify the thermally controlled seismogenic area for a range of fault parameters, including slip rate and fault length, and find that the area between the 350°C and 600°C isotherms (analogous to the zone of seismic slip) is nearly identical to that predicted from a half‐space cooling model. However, in contrast to the half‐space cooling model, we find that the depth to the 600°C isotherm and the width of the seismogenic zone are nearly constant along the fault, consistent with seismic observations. The calculated temperature structure and zone of permeable fluid flow are also used to approximate the stability field of hydrous phases in the upper mantle. We find that for slow slipping faults, the potential zone of hydrous alteration extends greater than 10 km in depth, suggesting that transform faults serve as a significant pathway for water to enter the oceanic upper mantle. |
doi_str_mv | 10.1029/2010GC003034 |
format | Article |
fullrecord | <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_miscellaneous_754869142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1642284062</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5684-8151eef66f84d0a8db281c5cb30600a14e3e80a894560912f8a064b71629e05d3</originalsourceid><addsrcrecordid>eNqNkU9v1DAQxSMEEqVw4wNYXOBAYMb_4nBDqzZUquBSBDfLyU60Lkkc7ATYb4-jRajiUHGa0Zvfe7L1iuI5whsEXr_lgNDsAAQI-aA4Q8VVyYFXD-_sj4snKd0CoFTKnBXzzYHi6IZypO7gJt-5gbV0cD98iCz0LHS0qWyJbkp9iCPr3Tos6R27Guch44sPU2L5wpYDsTRnIUfsfVqib9ftusUk8mn0nV-OT4tHvRsSPfszz4vPlxc3uw_l9afmavf-unRKG1kaVEjUa90buQdn9i032KmuFaABHEoSZLJeS6WhRt4bB1q2FWpeE6i9OC9ennLnGL6vlBY7-tTRMLiJwppspaTRNUqeyVf3kqgl50aC_g9UcSlqzREy-uIf9DasccpftkYjCswPyNDrE9TFkFKk3s7Rjy4eLYLdKrV3K804P-E__UDHe1nbNM0FVnwzlSdTroR-_TW5-M3qSlTKfvnY2EuUUn-Vla3Eb_hkr6U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861131754</pqid></control><display><type>article</type><title>Thermal-mechanical behavior of oceanic transform faults: Implications for the spatial distribution of seismicity</title><source>Wiley Online Library Open Access</source><creator>Roland, Emily ; Behn, Mark D. ; Hirth, Greg</creator><creatorcontrib>Roland, Emily ; Behn, Mark D. ; Hirth, Greg</creatorcontrib><description>To investigate the spatial distribution of earthquakes along oceanic transform faults, we utilize a 3‐D finite element model to calculate the mantle flow field and temperature structure associated with a ridge‐transform‐ridge system. The model incorporates a viscoplastic rheology to simulate brittle failure in the lithosphere and a non‐Newtonian temperature‐dependent viscous flow law in the underlying mantle. We consider the effects of three key thermal and rheological feedbacks: (1) frictional weakening due to mantle alteration, (2) shear heating, and (3) hydrothermal circulation in the shallow lithosphere. Of these effects, the thermal structure is most strongly influenced by hydrothermal cooling. We quantify the thermally controlled seismogenic area for a range of fault parameters, including slip rate and fault length, and find that the area between the 350°C and 600°C isotherms (analogous to the zone of seismic slip) is nearly identical to that predicted from a half‐space cooling model. However, in contrast to the half‐space cooling model, we find that the depth to the 600°C isotherm and the width of the seismogenic zone are nearly constant along the fault, consistent with seismic observations. The calculated temperature structure and zone of permeable fluid flow are also used to approximate the stability field of hydrous phases in the upper mantle. We find that for slow slipping faults, the potential zone of hydrous alteration extends greater than 10 km in depth, suggesting that transform faults serve as a significant pathway for water to enter the oceanic upper mantle.</description><identifier>ISSN: 1525-2027</identifier><identifier>EISSN: 1525-2027</identifier><identifier>DOI: 10.1029/2010GC003034</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Cooling ; Earthquakes ; Fault lines ; fault mechanics ; fault rheology ; Fluid flow ; Geological faults ; Geophysics ; Isotherms ; Lithosphere ; Mantle ; Marine geology ; Mathematical models ; oceanic transform faults ; Plate tectonics ; Rheology ; Seismic activity ; Seismic phenomena ; Seismology ; serpentinization ; Slip ; Spatial distribution ; Upper mantle ; Viscous flow ; Water depth</subject><ispartof>Geochemistry, geophysics, geosystems : G3, 2010-07, Vol.11 (7), p.np-n/a</ispartof><rights>Copyright 2010 by the American Geophysical Union.</rights><rights>Copyright 2010 by American Geophysical Union</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5684-8151eef66f84d0a8db281c5cb30600a14e3e80a894560912f8a064b71629e05d3</citedby><cites>FETCH-LOGICAL-a5684-8151eef66f84d0a8db281c5cb30600a14e3e80a894560912f8a064b71629e05d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2010GC003034$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2010GC003034$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,11542,27903,27904,45553,45554,46030,46454</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1029%2F2010GC003034$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Roland, Emily</creatorcontrib><creatorcontrib>Behn, Mark D.</creatorcontrib><creatorcontrib>Hirth, Greg</creatorcontrib><title>Thermal-mechanical behavior of oceanic transform faults: Implications for the spatial distribution of seismicity</title><title>Geochemistry, geophysics, geosystems : G3</title><addtitle>Geochem. Geophys. Geosyst</addtitle><description>To investigate the spatial distribution of earthquakes along oceanic transform faults, we utilize a 3‐D finite element model to calculate the mantle flow field and temperature structure associated with a ridge‐transform‐ridge system. The model incorporates a viscoplastic rheology to simulate brittle failure in the lithosphere and a non‐Newtonian temperature‐dependent viscous flow law in the underlying mantle. We consider the effects of three key thermal and rheological feedbacks: (1) frictional weakening due to mantle alteration, (2) shear heating, and (3) hydrothermal circulation in the shallow lithosphere. Of these effects, the thermal structure is most strongly influenced by hydrothermal cooling. We quantify the thermally controlled seismogenic area for a range of fault parameters, including slip rate and fault length, and find that the area between the 350°C and 600°C isotherms (analogous to the zone of seismic slip) is nearly identical to that predicted from a half‐space cooling model. However, in contrast to the half‐space cooling model, we find that the depth to the 600°C isotherm and the width of the seismogenic zone are nearly constant along the fault, consistent with seismic observations. The calculated temperature structure and zone of permeable fluid flow are also used to approximate the stability field of hydrous phases in the upper mantle. We find that for slow slipping faults, the potential zone of hydrous alteration extends greater than 10 km in depth, suggesting that transform faults serve as a significant pathway for water to enter the oceanic upper mantle.</description><subject>Cooling</subject><subject>Earthquakes</subject><subject>Fault lines</subject><subject>fault mechanics</subject><subject>fault rheology</subject><subject>Fluid flow</subject><subject>Geological faults</subject><subject>Geophysics</subject><subject>Isotherms</subject><subject>Lithosphere</subject><subject>Mantle</subject><subject>Marine geology</subject><subject>Mathematical models</subject><subject>oceanic transform faults</subject><subject>Plate tectonics</subject><subject>Rheology</subject><subject>Seismic activity</subject><subject>Seismic phenomena</subject><subject>Seismology</subject><subject>serpentinization</subject><subject>Slip</subject><subject>Spatial distribution</subject><subject>Upper mantle</subject><subject>Viscous flow</subject><subject>Water depth</subject><issn>1525-2027</issn><issn>1525-2027</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkU9v1DAQxSMEEqVw4wNYXOBAYMb_4nBDqzZUquBSBDfLyU60Lkkc7ATYb4-jRajiUHGa0Zvfe7L1iuI5whsEXr_lgNDsAAQI-aA4Q8VVyYFXD-_sj4snKd0CoFTKnBXzzYHi6IZypO7gJt-5gbV0cD98iCz0LHS0qWyJbkp9iCPr3Tos6R27Guch44sPU2L5wpYDsTRnIUfsfVqib9ftusUk8mn0nV-OT4tHvRsSPfszz4vPlxc3uw_l9afmavf-unRKG1kaVEjUa90buQdn9i032KmuFaABHEoSZLJeS6WhRt4bB1q2FWpeE6i9OC9ennLnGL6vlBY7-tTRMLiJwppspaTRNUqeyVf3kqgl50aC_g9UcSlqzREy-uIf9DasccpftkYjCswPyNDrE9TFkFKk3s7Rjy4eLYLdKrV3K804P-E__UDHe1nbNM0FVnwzlSdTroR-_TW5-M3qSlTKfvnY2EuUUn-Vla3Eb_hkr6U</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Roland, Emily</creator><creator>Behn, Mark D.</creator><creator>Hirth, Greg</creator><general>Blackwell Publishing Ltd</general><general>John Wiley & Sons, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>201007</creationdate><title>Thermal-mechanical behavior of oceanic transform faults: Implications for the spatial distribution of seismicity</title><author>Roland, Emily ; Behn, Mark D. ; Hirth, Greg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5684-8151eef66f84d0a8db281c5cb30600a14e3e80a894560912f8a064b71629e05d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Cooling</topic><topic>Earthquakes</topic><topic>Fault lines</topic><topic>fault mechanics</topic><topic>fault rheology</topic><topic>Fluid flow</topic><topic>Geological faults</topic><topic>Geophysics</topic><topic>Isotherms</topic><topic>Lithosphere</topic><topic>Mantle</topic><topic>Marine geology</topic><topic>Mathematical models</topic><topic>oceanic transform faults</topic><topic>Plate tectonics</topic><topic>Rheology</topic><topic>Seismic activity</topic><topic>Seismic phenomena</topic><topic>Seismology</topic><topic>serpentinization</topic><topic>Slip</topic><topic>Spatial distribution</topic><topic>Upper mantle</topic><topic>Viscous flow</topic><topic>Water depth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roland, Emily</creatorcontrib><creatorcontrib>Behn, Mark D.</creatorcontrib><creatorcontrib>Hirth, Greg</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geochemistry, geophysics, geosystems : G3</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Roland, Emily</au><au>Behn, Mark D.</au><au>Hirth, Greg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal-mechanical behavior of oceanic transform faults: Implications for the spatial distribution of seismicity</atitle><jtitle>Geochemistry, geophysics, geosystems : G3</jtitle><addtitle>Geochem. Geophys. Geosyst</addtitle><date>2010-07</date><risdate>2010</risdate><volume>11</volume><issue>7</issue><spage>np</spage><epage>n/a</epage><pages>np-n/a</pages><issn>1525-2027</issn><eissn>1525-2027</eissn><abstract>To investigate the spatial distribution of earthquakes along oceanic transform faults, we utilize a 3‐D finite element model to calculate the mantle flow field and temperature structure associated with a ridge‐transform‐ridge system. The model incorporates a viscoplastic rheology to simulate brittle failure in the lithosphere and a non‐Newtonian temperature‐dependent viscous flow law in the underlying mantle. We consider the effects of three key thermal and rheological feedbacks: (1) frictional weakening due to mantle alteration, (2) shear heating, and (3) hydrothermal circulation in the shallow lithosphere. Of these effects, the thermal structure is most strongly influenced by hydrothermal cooling. We quantify the thermally controlled seismogenic area for a range of fault parameters, including slip rate and fault length, and find that the area between the 350°C and 600°C isotherms (analogous to the zone of seismic slip) is nearly identical to that predicted from a half‐space cooling model. However, in contrast to the half‐space cooling model, we find that the depth to the 600°C isotherm and the width of the seismogenic zone are nearly constant along the fault, consistent with seismic observations. The calculated temperature structure and zone of permeable fluid flow are also used to approximate the stability field of hydrous phases in the upper mantle. We find that for slow slipping faults, the potential zone of hydrous alteration extends greater than 10 km in depth, suggesting that transform faults serve as a significant pathway for water to enter the oceanic upper mantle.</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2010GC003034</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1525-2027 |
ispartof | Geochemistry, geophysics, geosystems : G3, 2010-07, Vol.11 (7), p.np-n/a |
issn | 1525-2027 1525-2027 |
language | eng |
recordid | cdi_proquest_miscellaneous_754869142 |
source | Wiley Online Library Open Access |
subjects | Cooling Earthquakes Fault lines fault mechanics fault rheology Fluid flow Geological faults Geophysics Isotherms Lithosphere Mantle Marine geology Mathematical models oceanic transform faults Plate tectonics Rheology Seismic activity Seismic phenomena Seismology serpentinization Slip Spatial distribution Upper mantle Viscous flow Water depth |
title | Thermal-mechanical behavior of oceanic transform faults: Implications for the spatial distribution of seismicity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T12%3A16%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal-mechanical%20behavior%20of%20oceanic%20transform%20faults:%20Implications%20for%20the%20spatial%20distribution%20of%20seismicity&rft.jtitle=Geochemistry,%20geophysics,%20geosystems%20:%20G3&rft.au=Roland,%20Emily&rft.date=2010-07&rft.volume=11&rft.issue=7&rft.spage=np&rft.epage=n/a&rft.pages=np-n/a&rft.issn=1525-2027&rft.eissn=1525-2027&rft_id=info:doi/10.1029/2010GC003034&rft_dat=%3Cproquest_24P%3E1642284062%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=861131754&rft_id=info:pmid/&rfr_iscdi=true |