Thermal-mechanical behavior of oceanic transform faults: Implications for the spatial distribution of seismicity

To investigate the spatial distribution of earthquakes along oceanic transform faults, we utilize a 3‐D finite element model to calculate the mantle flow field and temperature structure associated with a ridge‐transform‐ridge system. The model incorporates a viscoplastic rheology to simulate brittle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geochemistry, geophysics, geosystems : G3 geophysics, geosystems : G3, 2010-07, Vol.11 (7), p.np-n/a
Hauptverfasser: Roland, Emily, Behn, Mark D., Hirth, Greg
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 7
container_start_page np
container_title Geochemistry, geophysics, geosystems : G3
container_volume 11
creator Roland, Emily
Behn, Mark D.
Hirth, Greg
description To investigate the spatial distribution of earthquakes along oceanic transform faults, we utilize a 3‐D finite element model to calculate the mantle flow field and temperature structure associated with a ridge‐transform‐ridge system. The model incorporates a viscoplastic rheology to simulate brittle failure in the lithosphere and a non‐Newtonian temperature‐dependent viscous flow law in the underlying mantle. We consider the effects of three key thermal and rheological feedbacks: (1) frictional weakening due to mantle alteration, (2) shear heating, and (3) hydrothermal circulation in the shallow lithosphere. Of these effects, the thermal structure is most strongly influenced by hydrothermal cooling. We quantify the thermally controlled seismogenic area for a range of fault parameters, including slip rate and fault length, and find that the area between the 350°C and 600°C isotherms (analogous to the zone of seismic slip) is nearly identical to that predicted from a half‐space cooling model. However, in contrast to the half‐space cooling model, we find that the depth to the 600°C isotherm and the width of the seismogenic zone are nearly constant along the fault, consistent with seismic observations. The calculated temperature structure and zone of permeable fluid flow are also used to approximate the stability field of hydrous phases in the upper mantle. We find that for slow slipping faults, the potential zone of hydrous alteration extends greater than 10 km in depth, suggesting that transform faults serve as a significant pathway for water to enter the oceanic upper mantle.
doi_str_mv 10.1029/2010GC003034
format Article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_miscellaneous_754869142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1642284062</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5684-8151eef66f84d0a8db281c5cb30600a14e3e80a894560912f8a064b71629e05d3</originalsourceid><addsrcrecordid>eNqNkU9v1DAQxSMEEqVw4wNYXOBAYMb_4nBDqzZUquBSBDfLyU60Lkkc7ATYb4-jRajiUHGa0Zvfe7L1iuI5whsEXr_lgNDsAAQI-aA4Q8VVyYFXD-_sj4snKd0CoFTKnBXzzYHi6IZypO7gJt-5gbV0cD98iCz0LHS0qWyJbkp9iCPr3Tos6R27Guch44sPU2L5wpYDsTRnIUfsfVqib9ftusUk8mn0nV-OT4tHvRsSPfszz4vPlxc3uw_l9afmavf-unRKG1kaVEjUa90buQdn9i032KmuFaABHEoSZLJeS6WhRt4bB1q2FWpeE6i9OC9ennLnGL6vlBY7-tTRMLiJwppspaTRNUqeyVf3kqgl50aC_g9UcSlqzREy-uIf9DasccpftkYjCswPyNDrE9TFkFKk3s7Rjy4eLYLdKrV3K804P-E__UDHe1nbNM0FVnwzlSdTroR-_TW5-M3qSlTKfvnY2EuUUn-Vla3Eb_hkr6U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861131754</pqid></control><display><type>article</type><title>Thermal-mechanical behavior of oceanic transform faults: Implications for the spatial distribution of seismicity</title><source>Wiley Online Library Open Access</source><creator>Roland, Emily ; Behn, Mark D. ; Hirth, Greg</creator><creatorcontrib>Roland, Emily ; Behn, Mark D. ; Hirth, Greg</creatorcontrib><description>To investigate the spatial distribution of earthquakes along oceanic transform faults, we utilize a 3‐D finite element model to calculate the mantle flow field and temperature structure associated with a ridge‐transform‐ridge system. The model incorporates a viscoplastic rheology to simulate brittle failure in the lithosphere and a non‐Newtonian temperature‐dependent viscous flow law in the underlying mantle. We consider the effects of three key thermal and rheological feedbacks: (1) frictional weakening due to mantle alteration, (2) shear heating, and (3) hydrothermal circulation in the shallow lithosphere. Of these effects, the thermal structure is most strongly influenced by hydrothermal cooling. We quantify the thermally controlled seismogenic area for a range of fault parameters, including slip rate and fault length, and find that the area between the 350°C and 600°C isotherms (analogous to the zone of seismic slip) is nearly identical to that predicted from a half‐space cooling model. However, in contrast to the half‐space cooling model, we find that the depth to the 600°C isotherm and the width of the seismogenic zone are nearly constant along the fault, consistent with seismic observations. The calculated temperature structure and zone of permeable fluid flow are also used to approximate the stability field of hydrous phases in the upper mantle. We find that for slow slipping faults, the potential zone of hydrous alteration extends greater than 10 km in depth, suggesting that transform faults serve as a significant pathway for water to enter the oceanic upper mantle.</description><identifier>ISSN: 1525-2027</identifier><identifier>EISSN: 1525-2027</identifier><identifier>DOI: 10.1029/2010GC003034</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Cooling ; Earthquakes ; Fault lines ; fault mechanics ; fault rheology ; Fluid flow ; Geological faults ; Geophysics ; Isotherms ; Lithosphere ; Mantle ; Marine geology ; Mathematical models ; oceanic transform faults ; Plate tectonics ; Rheology ; Seismic activity ; Seismic phenomena ; Seismology ; serpentinization ; Slip ; Spatial distribution ; Upper mantle ; Viscous flow ; Water depth</subject><ispartof>Geochemistry, geophysics, geosystems : G3, 2010-07, Vol.11 (7), p.np-n/a</ispartof><rights>Copyright 2010 by the American Geophysical Union.</rights><rights>Copyright 2010 by American Geophysical Union</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5684-8151eef66f84d0a8db281c5cb30600a14e3e80a894560912f8a064b71629e05d3</citedby><cites>FETCH-LOGICAL-a5684-8151eef66f84d0a8db281c5cb30600a14e3e80a894560912f8a064b71629e05d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2010GC003034$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2010GC003034$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,11542,27903,27904,45553,45554,46030,46454</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1029%2F2010GC003034$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Roland, Emily</creatorcontrib><creatorcontrib>Behn, Mark D.</creatorcontrib><creatorcontrib>Hirth, Greg</creatorcontrib><title>Thermal-mechanical behavior of oceanic transform faults: Implications for the spatial distribution of seismicity</title><title>Geochemistry, geophysics, geosystems : G3</title><addtitle>Geochem. Geophys. Geosyst</addtitle><description>To investigate the spatial distribution of earthquakes along oceanic transform faults, we utilize a 3‐D finite element model to calculate the mantle flow field and temperature structure associated with a ridge‐transform‐ridge system. The model incorporates a viscoplastic rheology to simulate brittle failure in the lithosphere and a non‐Newtonian temperature‐dependent viscous flow law in the underlying mantle. We consider the effects of three key thermal and rheological feedbacks: (1) frictional weakening due to mantle alteration, (2) shear heating, and (3) hydrothermal circulation in the shallow lithosphere. Of these effects, the thermal structure is most strongly influenced by hydrothermal cooling. We quantify the thermally controlled seismogenic area for a range of fault parameters, including slip rate and fault length, and find that the area between the 350°C and 600°C isotherms (analogous to the zone of seismic slip) is nearly identical to that predicted from a half‐space cooling model. However, in contrast to the half‐space cooling model, we find that the depth to the 600°C isotherm and the width of the seismogenic zone are nearly constant along the fault, consistent with seismic observations. The calculated temperature structure and zone of permeable fluid flow are also used to approximate the stability field of hydrous phases in the upper mantle. We find that for slow slipping faults, the potential zone of hydrous alteration extends greater than 10 km in depth, suggesting that transform faults serve as a significant pathway for water to enter the oceanic upper mantle.</description><subject>Cooling</subject><subject>Earthquakes</subject><subject>Fault lines</subject><subject>fault mechanics</subject><subject>fault rheology</subject><subject>Fluid flow</subject><subject>Geological faults</subject><subject>Geophysics</subject><subject>Isotherms</subject><subject>Lithosphere</subject><subject>Mantle</subject><subject>Marine geology</subject><subject>Mathematical models</subject><subject>oceanic transform faults</subject><subject>Plate tectonics</subject><subject>Rheology</subject><subject>Seismic activity</subject><subject>Seismic phenomena</subject><subject>Seismology</subject><subject>serpentinization</subject><subject>Slip</subject><subject>Spatial distribution</subject><subject>Upper mantle</subject><subject>Viscous flow</subject><subject>Water depth</subject><issn>1525-2027</issn><issn>1525-2027</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkU9v1DAQxSMEEqVw4wNYXOBAYMb_4nBDqzZUquBSBDfLyU60Lkkc7ATYb4-jRajiUHGa0Zvfe7L1iuI5whsEXr_lgNDsAAQI-aA4Q8VVyYFXD-_sj4snKd0CoFTKnBXzzYHi6IZypO7gJt-5gbV0cD98iCz0LHS0qWyJbkp9iCPr3Tos6R27Guch44sPU2L5wpYDsTRnIUfsfVqib9ftusUk8mn0nV-OT4tHvRsSPfszz4vPlxc3uw_l9afmavf-unRKG1kaVEjUa90buQdn9i032KmuFaABHEoSZLJeS6WhRt4bB1q2FWpeE6i9OC9ennLnGL6vlBY7-tTRMLiJwppspaTRNUqeyVf3kqgl50aC_g9UcSlqzREy-uIf9DasccpftkYjCswPyNDrE9TFkFKk3s7Rjy4eLYLdKrV3K804P-E__UDHe1nbNM0FVnwzlSdTroR-_TW5-M3qSlTKfvnY2EuUUn-Vla3Eb_hkr6U</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Roland, Emily</creator><creator>Behn, Mark D.</creator><creator>Hirth, Greg</creator><general>Blackwell Publishing Ltd</general><general>John Wiley &amp; Sons, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>201007</creationdate><title>Thermal-mechanical behavior of oceanic transform faults: Implications for the spatial distribution of seismicity</title><author>Roland, Emily ; Behn, Mark D. ; Hirth, Greg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5684-8151eef66f84d0a8db281c5cb30600a14e3e80a894560912f8a064b71629e05d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Cooling</topic><topic>Earthquakes</topic><topic>Fault lines</topic><topic>fault mechanics</topic><topic>fault rheology</topic><topic>Fluid flow</topic><topic>Geological faults</topic><topic>Geophysics</topic><topic>Isotherms</topic><topic>Lithosphere</topic><topic>Mantle</topic><topic>Marine geology</topic><topic>Mathematical models</topic><topic>oceanic transform faults</topic><topic>Plate tectonics</topic><topic>Rheology</topic><topic>Seismic activity</topic><topic>Seismic phenomena</topic><topic>Seismology</topic><topic>serpentinization</topic><topic>Slip</topic><topic>Spatial distribution</topic><topic>Upper mantle</topic><topic>Viscous flow</topic><topic>Water depth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roland, Emily</creatorcontrib><creatorcontrib>Behn, Mark D.</creatorcontrib><creatorcontrib>Hirth, Greg</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geochemistry, geophysics, geosystems : G3</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Roland, Emily</au><au>Behn, Mark D.</au><au>Hirth, Greg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal-mechanical behavior of oceanic transform faults: Implications for the spatial distribution of seismicity</atitle><jtitle>Geochemistry, geophysics, geosystems : G3</jtitle><addtitle>Geochem. Geophys. Geosyst</addtitle><date>2010-07</date><risdate>2010</risdate><volume>11</volume><issue>7</issue><spage>np</spage><epage>n/a</epage><pages>np-n/a</pages><issn>1525-2027</issn><eissn>1525-2027</eissn><abstract>To investigate the spatial distribution of earthquakes along oceanic transform faults, we utilize a 3‐D finite element model to calculate the mantle flow field and temperature structure associated with a ridge‐transform‐ridge system. The model incorporates a viscoplastic rheology to simulate brittle failure in the lithosphere and a non‐Newtonian temperature‐dependent viscous flow law in the underlying mantle. We consider the effects of three key thermal and rheological feedbacks: (1) frictional weakening due to mantle alteration, (2) shear heating, and (3) hydrothermal circulation in the shallow lithosphere. Of these effects, the thermal structure is most strongly influenced by hydrothermal cooling. We quantify the thermally controlled seismogenic area for a range of fault parameters, including slip rate and fault length, and find that the area between the 350°C and 600°C isotherms (analogous to the zone of seismic slip) is nearly identical to that predicted from a half‐space cooling model. However, in contrast to the half‐space cooling model, we find that the depth to the 600°C isotherm and the width of the seismogenic zone are nearly constant along the fault, consistent with seismic observations. The calculated temperature structure and zone of permeable fluid flow are also used to approximate the stability field of hydrous phases in the upper mantle. We find that for slow slipping faults, the potential zone of hydrous alteration extends greater than 10 km in depth, suggesting that transform faults serve as a significant pathway for water to enter the oceanic upper mantle.</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2010GC003034</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1525-2027
ispartof Geochemistry, geophysics, geosystems : G3, 2010-07, Vol.11 (7), p.np-n/a
issn 1525-2027
1525-2027
language eng
recordid cdi_proquest_miscellaneous_754869142
source Wiley Online Library Open Access
subjects Cooling
Earthquakes
Fault lines
fault mechanics
fault rheology
Fluid flow
Geological faults
Geophysics
Isotherms
Lithosphere
Mantle
Marine geology
Mathematical models
oceanic transform faults
Plate tectonics
Rheology
Seismic activity
Seismic phenomena
Seismology
serpentinization
Slip
Spatial distribution
Upper mantle
Viscous flow
Water depth
title Thermal-mechanical behavior of oceanic transform faults: Implications for the spatial distribution of seismicity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T12%3A16%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal-mechanical%20behavior%20of%20oceanic%20transform%20faults:%20Implications%20for%20the%20spatial%20distribution%20of%20seismicity&rft.jtitle=Geochemistry,%20geophysics,%20geosystems%20:%20G3&rft.au=Roland,%20Emily&rft.date=2010-07&rft.volume=11&rft.issue=7&rft.spage=np&rft.epage=n/a&rft.pages=np-n/a&rft.issn=1525-2027&rft.eissn=1525-2027&rft_id=info:doi/10.1029/2010GC003034&rft_dat=%3Cproquest_24P%3E1642284062%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=861131754&rft_id=info:pmid/&rfr_iscdi=true