Improvement of stereo vision-based position and velocity estimation and tracking using a stripe-based disparity estimation and inverse perspective map-based extended Kalman filter

This paper presents a method for estimating the position and velocity of a moving obstacle in a moving vehicle. In most stereo vision systems, an obstacle’s position is calculated by triangulation or an inverse perspective map (IPM) approach. However, measurement errors increase at long range due to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cytokine (Philadelphia, Pa.) Pa.), 2010-09, Vol.48 (9), p.859-868
Hauptverfasser: Lim, Young-Chul, Lee, Minho, Lee, Chung-Hee, Kwon, Soon, Lee, Jong-hun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 868
container_issue 9
container_start_page 859
container_title Cytokine (Philadelphia, Pa.)
container_volume 48
creator Lim, Young-Chul
Lee, Minho
Lee, Chung-Hee
Kwon, Soon
Lee, Jong-hun
description This paper presents a method for estimating the position and velocity of a moving obstacle in a moving vehicle. In most stereo vision systems, an obstacle’s position is calculated by triangulation or an inverse perspective map (IPM) approach. However, measurement errors increase at long range due to quantization errors and matching errors. The key point that reduces measurement errors is to estimate the disparity accurately and precisely. This article focuses on the improvement in precision because accuracy can be enhanced through a calibration process in most measurement systems. The proposed method has two steps. One is to estimate sub-pixel disparities using a stripe-based accurate disparity (S-BAD) method. The other is to estimate and track the position and velocity of the obstacle with an IPM-based extended Kalman filter (EKF). The S-BAD method estimates accurate sub-pixel disparities with stripe-based zero-mean normalized cross correlation (ZNCC) using the vertical edge features within the dominant maximum disparity region that correspond to the nearest points from the host vehicles. The S-BAD method has the advantage of minimizing the quantization error and matching ambiguity and enhancing the precision of the disparity for the obstacle. The IPM-based EKF minimizes the error covariance and estimates the relative velocity while predicting and updating the state of the obstacle recursively. The method also gives optimal performance due to the measurement model with the stable error covariance. The experimental results show that the S-BAD method improves the precision of estimating the distance, and the IPM-based EKF minimizes the error covariance of the velocity in real road environments.
doi_str_mv 10.1016/j.optlaseng.2010.04.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_754868914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0143816610000734</els_id><sourcerecordid>754868914</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-8d7d79e8168b24cc60da1c7d20ddbdd1de94152e3bb8c9be9bea2b75fa1b6afc3</originalsourceid><addsrcrecordid>eNqFUU2L2zAQFaWFpml_Q3UpPTkr2Y5lH5elH0sXemnPQpbGi1JbUjWK6f6u_sFOSMipsCBG0vDem4_H2HspdlLI7uawi6nMBiE87mpBWdHuhJAv2Eb2qqlEI-qXbCNk21S97LrX7A3igQBdK-WG_b1fUo4rLBAKjxPHAhkiXz36GKqRZB1PEX2hLzfB8RXmaH154oDFL-aaL9nYXz488iOeoiGl7BNcJJzHZPJ_aD6skBF4opjAFr8CX0y60OBPgeDo8c3Miwl88jP195a9msyM8O5yb9nPz59-3H2tHr5_ub-7fahso1SpeqecGoCG7se6tbYTzkirXC2cG52TDoZW7mtoxrG3wwh0TD2q_WTk2JnJNlv28axLG_p9pMb14tHCPJsA8Yha7du-6wfa7JapM9LmiJhh0inTlPlJS6FPLumDvrqkTy5p0WoygZgfLjUMWjNP2QTr8Uqva5IfxEC42zMOaODVQ9ZoPQQLzmdam3bRP1vrH-ZHtCM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>754868914</pqid></control><display><type>article</type><title>Improvement of stereo vision-based position and velocity estimation and tracking using a stripe-based disparity estimation and inverse perspective map-based extended Kalman filter</title><source>Elsevier ScienceDirect Journals</source><creator>Lim, Young-Chul ; Lee, Minho ; Lee, Chung-Hee ; Kwon, Soon ; Lee, Jong-hun</creator><creatorcontrib>Lim, Young-Chul ; Lee, Minho ; Lee, Chung-Hee ; Kwon, Soon ; Lee, Jong-hun</creatorcontrib><description>This paper presents a method for estimating the position and velocity of a moving obstacle in a moving vehicle. In most stereo vision systems, an obstacle’s position is calculated by triangulation or an inverse perspective map (IPM) approach. However, measurement errors increase at long range due to quantization errors and matching errors. The key point that reduces measurement errors is to estimate the disparity accurately and precisely. This article focuses on the improvement in precision because accuracy can be enhanced through a calibration process in most measurement systems. The proposed method has two steps. One is to estimate sub-pixel disparities using a stripe-based accurate disparity (S-BAD) method. The other is to estimate and track the position and velocity of the obstacle with an IPM-based extended Kalman filter (EKF). The S-BAD method estimates accurate sub-pixel disparities with stripe-based zero-mean normalized cross correlation (ZNCC) using the vertical edge features within the dominant maximum disparity region that correspond to the nearest points from the host vehicles. The S-BAD method has the advantage of minimizing the quantization error and matching ambiguity and enhancing the precision of the disparity for the obstacle. The IPM-based EKF minimizes the error covariance and estimates the relative velocity while predicting and updating the state of the obstacle recursively. The method also gives optimal performance due to the measurement model with the stable error covariance. The experimental results show that the S-BAD method improves the precision of estimating the distance, and the IPM-based EKF minimizes the error covariance of the velocity in real road environments.</description><identifier>ISSN: 0143-8166</identifier><identifier>ISSN: 1043-4666</identifier><identifier>EISSN: 1873-0302</identifier><identifier>DOI: 10.1016/j.optlaseng.2010.04.001</identifier><identifier>CODEN: OLENDN</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Computer vision, robotic vision ; Disparity estimation ; Exact sciences and technology ; Extended Kalman filter ; Fundamental areas of phenomenology (including applications) ; General equipment and techniques ; Imaging and optical processing ; Imaging detectors and sensors ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Inverse perspective map ; Optical elements, devices, and systems ; Optics ; Physics ; Position and velocity estimation ; Sub-pixel interpolation</subject><ispartof>Cytokine (Philadelphia, Pa.), 2010-09, Vol.48 (9), p.859-868</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-8d7d79e8168b24cc60da1c7d20ddbdd1de94152e3bb8c9be9bea2b75fa1b6afc3</citedby><cites>FETCH-LOGICAL-c377t-8d7d79e8168b24cc60da1c7d20ddbdd1de94152e3bb8c9be9bea2b75fa1b6afc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0143816610000734$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22914909$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lim, Young-Chul</creatorcontrib><creatorcontrib>Lee, Minho</creatorcontrib><creatorcontrib>Lee, Chung-Hee</creatorcontrib><creatorcontrib>Kwon, Soon</creatorcontrib><creatorcontrib>Lee, Jong-hun</creatorcontrib><title>Improvement of stereo vision-based position and velocity estimation and tracking using a stripe-based disparity estimation and inverse perspective map-based extended Kalman filter</title><title>Cytokine (Philadelphia, Pa.)</title><description>This paper presents a method for estimating the position and velocity of a moving obstacle in a moving vehicle. In most stereo vision systems, an obstacle’s position is calculated by triangulation or an inverse perspective map (IPM) approach. However, measurement errors increase at long range due to quantization errors and matching errors. The key point that reduces measurement errors is to estimate the disparity accurately and precisely. This article focuses on the improvement in precision because accuracy can be enhanced through a calibration process in most measurement systems. The proposed method has two steps. One is to estimate sub-pixel disparities using a stripe-based accurate disparity (S-BAD) method. The other is to estimate and track the position and velocity of the obstacle with an IPM-based extended Kalman filter (EKF). The S-BAD method estimates accurate sub-pixel disparities with stripe-based zero-mean normalized cross correlation (ZNCC) using the vertical edge features within the dominant maximum disparity region that correspond to the nearest points from the host vehicles. The S-BAD method has the advantage of minimizing the quantization error and matching ambiguity and enhancing the precision of the disparity for the obstacle. The IPM-based EKF minimizes the error covariance and estimates the relative velocity while predicting and updating the state of the obstacle recursively. The method also gives optimal performance due to the measurement model with the stable error covariance. The experimental results show that the S-BAD method improves the precision of estimating the distance, and the IPM-based EKF minimizes the error covariance of the velocity in real road environments.</description><subject>Computer vision, robotic vision</subject><subject>Disparity estimation</subject><subject>Exact sciences and technology</subject><subject>Extended Kalman filter</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>General equipment and techniques</subject><subject>Imaging and optical processing</subject><subject>Imaging detectors and sensors</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Inverse perspective map</subject><subject>Optical elements, devices, and systems</subject><subject>Optics</subject><subject>Physics</subject><subject>Position and velocity estimation</subject><subject>Sub-pixel interpolation</subject><issn>0143-8166</issn><issn>1043-4666</issn><issn>1873-0302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFUU2L2zAQFaWFpml_Q3UpPTkr2Y5lH5elH0sXemnPQpbGi1JbUjWK6f6u_sFOSMipsCBG0vDem4_H2HspdlLI7uawi6nMBiE87mpBWdHuhJAv2Eb2qqlEI-qXbCNk21S97LrX7A3igQBdK-WG_b1fUo4rLBAKjxPHAhkiXz36GKqRZB1PEX2hLzfB8RXmaH154oDFL-aaL9nYXz488iOeoiGl7BNcJJzHZPJ_aD6skBF4opjAFr8CX0y60OBPgeDo8c3Miwl88jP195a9msyM8O5yb9nPz59-3H2tHr5_ub-7fahso1SpeqecGoCG7se6tbYTzkirXC2cG52TDoZW7mtoxrG3wwh0TD2q_WTk2JnJNlv28axLG_p9pMb14tHCPJsA8Yha7du-6wfa7JapM9LmiJhh0inTlPlJS6FPLumDvrqkTy5p0WoygZgfLjUMWjNP2QTr8Uqva5IfxEC42zMOaODVQ9ZoPQQLzmdam3bRP1vrH-ZHtCM</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Lim, Young-Chul</creator><creator>Lee, Minho</creator><creator>Lee, Chung-Hee</creator><creator>Kwon, Soon</creator><creator>Lee, Jong-hun</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>H94</scope></search><sort><creationdate>20100901</creationdate><title>Improvement of stereo vision-based position and velocity estimation and tracking using a stripe-based disparity estimation and inverse perspective map-based extended Kalman filter</title><author>Lim, Young-Chul ; Lee, Minho ; Lee, Chung-Hee ; Kwon, Soon ; Lee, Jong-hun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-8d7d79e8168b24cc60da1c7d20ddbdd1de94152e3bb8c9be9bea2b75fa1b6afc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Computer vision, robotic vision</topic><topic>Disparity estimation</topic><topic>Exact sciences and technology</topic><topic>Extended Kalman filter</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>General equipment and techniques</topic><topic>Imaging and optical processing</topic><topic>Imaging detectors and sensors</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Inverse perspective map</topic><topic>Optical elements, devices, and systems</topic><topic>Optics</topic><topic>Physics</topic><topic>Position and velocity estimation</topic><topic>Sub-pixel interpolation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lim, Young-Chul</creatorcontrib><creatorcontrib>Lee, Minho</creatorcontrib><creatorcontrib>Lee, Chung-Hee</creatorcontrib><creatorcontrib>Kwon, Soon</creatorcontrib><creatorcontrib>Lee, Jong-hun</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><jtitle>Cytokine (Philadelphia, Pa.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lim, Young-Chul</au><au>Lee, Minho</au><au>Lee, Chung-Hee</au><au>Kwon, Soon</au><au>Lee, Jong-hun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improvement of stereo vision-based position and velocity estimation and tracking using a stripe-based disparity estimation and inverse perspective map-based extended Kalman filter</atitle><jtitle>Cytokine (Philadelphia, Pa.)</jtitle><date>2010-09-01</date><risdate>2010</risdate><volume>48</volume><issue>9</issue><spage>859</spage><epage>868</epage><pages>859-868</pages><issn>0143-8166</issn><issn>1043-4666</issn><eissn>1873-0302</eissn><coden>OLENDN</coden><abstract>This paper presents a method for estimating the position and velocity of a moving obstacle in a moving vehicle. In most stereo vision systems, an obstacle’s position is calculated by triangulation or an inverse perspective map (IPM) approach. However, measurement errors increase at long range due to quantization errors and matching errors. The key point that reduces measurement errors is to estimate the disparity accurately and precisely. This article focuses on the improvement in precision because accuracy can be enhanced through a calibration process in most measurement systems. The proposed method has two steps. One is to estimate sub-pixel disparities using a stripe-based accurate disparity (S-BAD) method. The other is to estimate and track the position and velocity of the obstacle with an IPM-based extended Kalman filter (EKF). The S-BAD method estimates accurate sub-pixel disparities with stripe-based zero-mean normalized cross correlation (ZNCC) using the vertical edge features within the dominant maximum disparity region that correspond to the nearest points from the host vehicles. The S-BAD method has the advantage of minimizing the quantization error and matching ambiguity and enhancing the precision of the disparity for the obstacle. The IPM-based EKF minimizes the error covariance and estimates the relative velocity while predicting and updating the state of the obstacle recursively. The method also gives optimal performance due to the measurement model with the stable error covariance. The experimental results show that the S-BAD method improves the precision of estimating the distance, and the IPM-based EKF minimizes the error covariance of the velocity in real road environments.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.optlaseng.2010.04.001</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0143-8166
ispartof Cytokine (Philadelphia, Pa.), 2010-09, Vol.48 (9), p.859-868
issn 0143-8166
1043-4666
1873-0302
language eng
recordid cdi_proquest_miscellaneous_754868914
source Elsevier ScienceDirect Journals
subjects Computer vision, robotic vision
Disparity estimation
Exact sciences and technology
Extended Kalman filter
Fundamental areas of phenomenology (including applications)
General equipment and techniques
Imaging and optical processing
Imaging detectors and sensors
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
Inverse perspective map
Optical elements, devices, and systems
Optics
Physics
Position and velocity estimation
Sub-pixel interpolation
title Improvement of stereo vision-based position and velocity estimation and tracking using a stripe-based disparity estimation and inverse perspective map-based extended Kalman filter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T21%3A07%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improvement%20of%20stereo%20vision-based%20position%20and%20velocity%20estimation%20and%20tracking%20using%20a%20stripe-based%20disparity%20estimation%20and%20inverse%20perspective%20map-based%20extended%20Kalman%20filter&rft.jtitle=Cytokine%20(Philadelphia,%20Pa.)&rft.au=Lim,%20Young-Chul&rft.date=2010-09-01&rft.volume=48&rft.issue=9&rft.spage=859&rft.epage=868&rft.pages=859-868&rft.issn=0143-8166&rft.eissn=1873-0302&rft.coden=OLENDN&rft_id=info:doi/10.1016/j.optlaseng.2010.04.001&rft_dat=%3Cproquest_cross%3E754868914%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=754868914&rft_id=info:pmid/&rft_els_id=S0143816610000734&rfr_iscdi=true