Mechanotransduction pathways in bone : calcium fluxes and the role of voltage-operated calcium channels
Changes in strain distribution across the vertebrate skeleton induce modelling and remodelling of bone structure. This relationship, like many in biomedical science, has been recognised since the 1800s, but it is only the recent development of in vivo and in vitro models that is allowing detailed in...
Gespeichert in:
Veröffentlicht in: | Medical & biological engineering & computing 1999-05, Vol.37 (3), p.403-409 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 409 |
---|---|
container_issue | 3 |
container_start_page | 403 |
container_title | Medical & biological engineering & computing |
container_volume | 37 |
creator | EL HAJ, A. J WALKER, L. M PRESTON, M. R PUBLICOVER, S. J |
description | Changes in strain distribution across the vertebrate skeleton induce modelling and remodelling of bone structure. This relationship, like many in biomedical science, has been recognised since the 1800s, but it is only the recent development of in vivo and in vitro models that is allowing detailed investigation of the cellular mechanisms involved. A number of secondary messenger pathways have been implicated in load transduction by bone cells, and many of these pathways are similar to those proposed for other load-responsive cell types. It appears that load transduction involves interaction between several messenger pathways, rather than one specific switch. Interaction between these pathways may result in a cascade of responses that promote and maintain bone cell activity in remodelling of bone. The paper outlines research on the early rapid signals for load transduction and, in particular, activation of membrane channels in osteoblasts. The involvement of calcium channels in the immediate load response and the modulation of intracellular calcium as an early signal are discussed. These membrane channels present a possible target for manipulation in the engineering of bone tissue repair. |
doi_str_mv | 10.1007/bf02513320 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_754568195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2089414731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-d52fca26d553da2f825009b39998287b4c6fabb8030ef930f5b32ede411da8b03</originalsourceid><addsrcrecordid>eNqF0Utv1DAUBWALUdGhdMMPQBZCrVQpcP1KnO5oRUulVmxgHflx3UmVsQc7ofTfk9EMLWIBK28-HV2fQ8hrBu8ZQPPBBuCKCcHhGVmwRrIKpJTPyQKYhAoY0_vkZSl3AJwpLl-QfQYKlGjVgtzeoFuamMZsYvGTG_sU6dqMy3vzUGgfqU0R6Sl1ZnD9tKJhmH5ioSZ6Oi6R5jQgTYH-SMNobrFKa8xmRP_oN-ERh_KK7AUzFDzcvQfk28Wnr-efq-svl1fnH68rJ2s9Vl7x4AyvvVLCGx40VwCtFW3baq4bK10djLUaBGBoBQRlBUePkjFvtAVxQI63ueucvk9Yxm7VF4fDYCKmqXSNkqrWrFWzPPq3hKYFPff6P8iZ0FI3fIZv_4J3acpx_m5XS72pXmwOPNkil1MpGUO3zv3K5IeOQbeZszu7-D3njN_sEie7Qv8H3e43g3c7YMpceZhXdH15cloqUYP4BdZ7phc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>648152430</pqid></control><display><type>article</type><title>Mechanotransduction pathways in bone : calcium fluxes and the role of voltage-operated calcium channels</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>EL HAJ, A. J ; WALKER, L. M ; PRESTON, M. R ; PUBLICOVER, S. J</creator><creatorcontrib>EL HAJ, A. J ; WALKER, L. M ; PRESTON, M. R ; PUBLICOVER, S. J</creatorcontrib><description>Changes in strain distribution across the vertebrate skeleton induce modelling and remodelling of bone structure. This relationship, like many in biomedical science, has been recognised since the 1800s, but it is only the recent development of in vivo and in vitro models that is allowing detailed investigation of the cellular mechanisms involved. A number of secondary messenger pathways have been implicated in load transduction by bone cells, and many of these pathways are similar to those proposed for other load-responsive cell types. It appears that load transduction involves interaction between several messenger pathways, rather than one specific switch. Interaction between these pathways may result in a cascade of responses that promote and maintain bone cell activity in remodelling of bone. The paper outlines research on the early rapid signals for load transduction and, in particular, activation of membrane channels in osteoblasts. The involvement of calcium channels in the immediate load response and the modulation of intracellular calcium as an early signal are discussed. These membrane channels present a possible target for manipulation in the engineering of bone tissue repair.</description><identifier>ISSN: 0140-0118</identifier><identifier>EISSN: 1741-0444</identifier><identifier>DOI: 10.1007/bf02513320</identifier><identifier>PMID: 10505395</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Biological and medical sciences ; Biomechanical Phenomena ; Bone ; Bone and Bones - physiology ; Calcium ; Calcium - metabolism ; Calcium Channels - physiology ; Cell membranes ; Cells ; Electrophysiology ; Fundamental and applied biological sciences. Psychology ; Humans ; Load ; Miscellaneous ; Models, Biological ; Space life sciences ; Stress, Mechanical ; Vertebrates: osteoarticular system, musculoskeletal system</subject><ispartof>Medical & biological engineering & computing, 1999-05, Vol.37 (3), p.403-409</ispartof><rights>1999 INIST-CNRS</rights><rights>IFMBE 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-d52fca26d553da2f825009b39998287b4c6fabb8030ef930f5b32ede411da8b03</citedby><cites>FETCH-LOGICAL-c468t-d52fca26d553da2f825009b39998287b4c6fabb8030ef930f5b32ede411da8b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1845360$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10505395$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>EL HAJ, A. J</creatorcontrib><creatorcontrib>WALKER, L. M</creatorcontrib><creatorcontrib>PRESTON, M. R</creatorcontrib><creatorcontrib>PUBLICOVER, S. J</creatorcontrib><title>Mechanotransduction pathways in bone : calcium fluxes and the role of voltage-operated calcium channels</title><title>Medical & biological engineering & computing</title><addtitle>Med Biol Eng Comput</addtitle><description>Changes in strain distribution across the vertebrate skeleton induce modelling and remodelling of bone structure. This relationship, like many in biomedical science, has been recognised since the 1800s, but it is only the recent development of in vivo and in vitro models that is allowing detailed investigation of the cellular mechanisms involved. A number of secondary messenger pathways have been implicated in load transduction by bone cells, and many of these pathways are similar to those proposed for other load-responsive cell types. It appears that load transduction involves interaction between several messenger pathways, rather than one specific switch. Interaction between these pathways may result in a cascade of responses that promote and maintain bone cell activity in remodelling of bone. The paper outlines research on the early rapid signals for load transduction and, in particular, activation of membrane channels in osteoblasts. The involvement of calcium channels in the immediate load response and the modulation of intracellular calcium as an early signal are discussed. These membrane channels present a possible target for manipulation in the engineering of bone tissue repair.</description><subject>Biological and medical sciences</subject><subject>Biomechanical Phenomena</subject><subject>Bone</subject><subject>Bone and Bones - physiology</subject><subject>Calcium</subject><subject>Calcium - metabolism</subject><subject>Calcium Channels - physiology</subject><subject>Cell membranes</subject><subject>Cells</subject><subject>Electrophysiology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humans</subject><subject>Load</subject><subject>Miscellaneous</subject><subject>Models, Biological</subject><subject>Space life sciences</subject><subject>Stress, Mechanical</subject><subject>Vertebrates: osteoarticular system, musculoskeletal system</subject><issn>0140-0118</issn><issn>1741-0444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0Utv1DAUBWALUdGhdMMPQBZCrVQpcP1KnO5oRUulVmxgHflx3UmVsQc7ofTfk9EMLWIBK28-HV2fQ8hrBu8ZQPPBBuCKCcHhGVmwRrIKpJTPyQKYhAoY0_vkZSl3AJwpLl-QfQYKlGjVgtzeoFuamMZsYvGTG_sU6dqMy3vzUGgfqU0R6Sl1ZnD9tKJhmH5ioSZ6Oi6R5jQgTYH-SMNobrFKa8xmRP_oN-ERh_KK7AUzFDzcvQfk28Wnr-efq-svl1fnH68rJ2s9Vl7x4AyvvVLCGx40VwCtFW3baq4bK10djLUaBGBoBQRlBUePkjFvtAVxQI63ueucvk9Yxm7VF4fDYCKmqXSNkqrWrFWzPPq3hKYFPff6P8iZ0FI3fIZv_4J3acpx_m5XS72pXmwOPNkil1MpGUO3zv3K5IeOQbeZszu7-D3njN_sEie7Qv8H3e43g3c7YMpceZhXdH15cloqUYP4BdZ7phc</recordid><startdate>19990501</startdate><enddate>19990501</enddate><creator>EL HAJ, A. J</creator><creator>WALKER, L. M</creator><creator>PRESTON, M. R</creator><creator>PUBLICOVER, S. J</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7SC</scope><scope>7TB</scope><scope>7TS</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>L.-</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope><scope>7QP</scope></search><sort><creationdate>19990501</creationdate><title>Mechanotransduction pathways in bone : calcium fluxes and the role of voltage-operated calcium channels</title><author>EL HAJ, A. J ; WALKER, L. M ; PRESTON, M. R ; PUBLICOVER, S. J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-d52fca26d553da2f825009b39998287b4c6fabb8030ef930f5b32ede411da8b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Biological and medical sciences</topic><topic>Biomechanical Phenomena</topic><topic>Bone</topic><topic>Bone and Bones - physiology</topic><topic>Calcium</topic><topic>Calcium - metabolism</topic><topic>Calcium Channels - physiology</topic><topic>Cell membranes</topic><topic>Cells</topic><topic>Electrophysiology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humans</topic><topic>Load</topic><topic>Miscellaneous</topic><topic>Models, Biological</topic><topic>Space life sciences</topic><topic>Stress, Mechanical</topic><topic>Vertebrates: osteoarticular system, musculoskeletal system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>EL HAJ, A. J</creatorcontrib><creatorcontrib>WALKER, L. M</creatorcontrib><creatorcontrib>PRESTON, M. R</creatorcontrib><creatorcontrib>PUBLICOVER, S. J</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><jtitle>Medical & biological engineering & computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>EL HAJ, A. J</au><au>WALKER, L. M</au><au>PRESTON, M. R</au><au>PUBLICOVER, S. J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanotransduction pathways in bone : calcium fluxes and the role of voltage-operated calcium channels</atitle><jtitle>Medical & biological engineering & computing</jtitle><addtitle>Med Biol Eng Comput</addtitle><date>1999-05-01</date><risdate>1999</risdate><volume>37</volume><issue>3</issue><spage>403</spage><epage>409</epage><pages>403-409</pages><issn>0140-0118</issn><eissn>1741-0444</eissn><abstract>Changes in strain distribution across the vertebrate skeleton induce modelling and remodelling of bone structure. This relationship, like many in biomedical science, has been recognised since the 1800s, but it is only the recent development of in vivo and in vitro models that is allowing detailed investigation of the cellular mechanisms involved. A number of secondary messenger pathways have been implicated in load transduction by bone cells, and many of these pathways are similar to those proposed for other load-responsive cell types. It appears that load transduction involves interaction between several messenger pathways, rather than one specific switch. Interaction between these pathways may result in a cascade of responses that promote and maintain bone cell activity in remodelling of bone. The paper outlines research on the early rapid signals for load transduction and, in particular, activation of membrane channels in osteoblasts. The involvement of calcium channels in the immediate load response and the modulation of intracellular calcium as an early signal are discussed. These membrane channels present a possible target for manipulation in the engineering of bone tissue repair.</abstract><cop>Heidelberg</cop><pub>Springer</pub><pmid>10505395</pmid><doi>10.1007/bf02513320</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0140-0118 |
ispartof | Medical & biological engineering & computing, 1999-05, Vol.37 (3), p.403-409 |
issn | 0140-0118 1741-0444 |
language | eng |
recordid | cdi_proquest_miscellaneous_754568195 |
source | MEDLINE; SpringerLink Journals |
subjects | Biological and medical sciences Biomechanical Phenomena Bone Bone and Bones - physiology Calcium Calcium - metabolism Calcium Channels - physiology Cell membranes Cells Electrophysiology Fundamental and applied biological sciences. Psychology Humans Load Miscellaneous Models, Biological Space life sciences Stress, Mechanical Vertebrates: osteoarticular system, musculoskeletal system |
title | Mechanotransduction pathways in bone : calcium fluxes and the role of voltage-operated calcium channels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A17%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanotransduction%20pathways%20in%20bone%20:%20calcium%20fluxes%20and%20the%20role%20of%20voltage-operated%20calcium%20channels&rft.jtitle=Medical%20&%20biological%20engineering%20&%20computing&rft.au=EL%20HAJ,%20A.%20J&rft.date=1999-05-01&rft.volume=37&rft.issue=3&rft.spage=403&rft.epage=409&rft.pages=403-409&rft.issn=0140-0118&rft.eissn=1741-0444&rft_id=info:doi/10.1007/bf02513320&rft_dat=%3Cproquest_cross%3E2089414731%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=648152430&rft_id=info:pmid/10505395&rfr_iscdi=true |