Computer modelling of the cerebrospinal fluid flow dynamics of aqueduct stenosis
As the craniospinal space is a pressure loaded system it is difficult to conceptualize and understand the flow dynamics through the ventricular system. Aqueduct stenosis compromises flow, increasing the pressure required to move cerebrospinal fluid (CSF) through the ventricles. Under normal circumst...
Gespeichert in:
Veröffentlicht in: | Medical & biological engineering & computing 1999, Vol.37 (1), p.59-63 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 63 |
---|---|
container_issue | 1 |
container_start_page | 59 |
container_title | Medical & biological engineering & computing |
container_volume | 37 |
creator | JACOBSON, E. E FLETCHER, D. F MORGAN, M. K JOHNSTON, I. H |
description | As the craniospinal space is a pressure loaded system it is difficult to conceptualize and understand the flow dynamics through the ventricular system. Aqueduct stenosis compromises flow, increasing the pressure required to move cerebrospinal fluid (CSF) through the ventricles. Under normal circumstances, less than one pascal (1 Pa) of pressure is required to move a physiological flow of CSF through the aqueduct. This is too small to measure using clinical pressure transducers. A computational fluid dynamics (CFD) program, CFX, has been used to model two forms of aqueduct stenosis: simple narrowing and forking of the aqueduct. This study shows that with mild stenoses, the increase in pressure required to drive flow becomes significant (86-125 Pa), which may result in an increased transmantle pressure difference but not necessarily an increased intraventricular pressure. Severe stenoses will result in both. Wall shear stresses increase concomitantly and may contribute to local damage of the aqueduct wall and further gliosis with narrowing. |
doi_str_mv | 10.1007/BF02513267 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_754566816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2089410821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-4db007fdf930c90289bf3b7c60aabe0c54ae55f473678e713d0a222e6040df433</originalsourceid><addsrcrecordid>eNp90c9LHDEUB_BQLN2t7aV_gAwiFQrTviRvksxRF7WFhXrQ85DJDx2ZmazJDMX_3mx3QfHg5b3Lhy_vByHfKPykAPLX-SWwinIm5AeypBJpCYh4QJZAEUqgVC3I55QeABitGH4iCwq8Fgr5klyvwrCZJxeLIVjX9914VwRfTPeuMC66Noa06UbdF76fO5tr-FfYp1EPnUlbqB9nZ2czFWlyY0hd-kI-et0n93XfD8nt5cXN6ne5_nv1Z3W2Lg2XdCrRtnl0b33NwdTAVN163kojQOvWgalQu6ryKLmQyknKLWjGmBOAYD1yfkhOd7mbGPIMaWqGLpm8gR5dmFMjK6yEUFRk-f1dKWolJaeY4fEb-BDmmJfPBqUCRf-n_dghk0-TovPNJnaDjk8NhWb7jublHRkf7RPndnD2Fd3dP4OTPdDJ6N5HPZouvTihGEfkzyOdkEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>647808116</pqid></control><display><type>article</type><title>Computer modelling of the cerebrospinal fluid flow dynamics of aqueduct stenosis</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>JACOBSON, E. E ; FLETCHER, D. F ; MORGAN, M. K ; JOHNSTON, I. H</creator><creatorcontrib>JACOBSON, E. E ; FLETCHER, D. F ; MORGAN, M. K ; JOHNSTON, I. H</creatorcontrib><description>As the craniospinal space is a pressure loaded system it is difficult to conceptualize and understand the flow dynamics through the ventricular system. Aqueduct stenosis compromises flow, increasing the pressure required to move cerebrospinal fluid (CSF) through the ventricles. Under normal circumstances, less than one pascal (1 Pa) of pressure is required to move a physiological flow of CSF through the aqueduct. This is too small to measure using clinical pressure transducers. A computational fluid dynamics (CFD) program, CFX, has been used to model two forms of aqueduct stenosis: simple narrowing and forking of the aqueduct. This study shows that with mild stenoses, the increase in pressure required to drive flow becomes significant (86-125 Pa), which may result in an increased transmantle pressure difference but not necessarily an increased intraventricular pressure. Severe stenoses will result in both. Wall shear stresses increase concomitantly and may contribute to local damage of the aqueduct wall and further gliosis with narrowing.</description><identifier>ISSN: 0140-0118</identifier><identifier>EISSN: 1741-0444</identifier><identifier>DOI: 10.1007/BF02513267</identifier><identifier>PMID: 10396843</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Biological and medical sciences ; Cerebrospinal Fluid ; Cerebrospinal Fluid Pressure ; Cerebrospinal fluid. Meninges. Spinal cord ; Computational Biology ; Computer Simulation ; Fluid dynamics ; Fluid Shifts ; Humans ; Hydrocephalus - physiopathology ; Medical sciences ; Models, Biological ; Nervous system (semeiology, syndromes) ; Neurology ; Space life sciences</subject><ispartof>Medical & biological engineering & computing, 1999, Vol.37 (1), p.59-63</ispartof><rights>1999 INIST-CNRS</rights><rights>IFMBE 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-4db007fdf930c90289bf3b7c60aabe0c54ae55f473678e713d0a222e6040df433</citedby><cites>FETCH-LOGICAL-c371t-4db007fdf930c90289bf3b7c60aabe0c54ae55f473678e713d0a222e6040df433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1682344$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10396843$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>JACOBSON, E. E</creatorcontrib><creatorcontrib>FLETCHER, D. F</creatorcontrib><creatorcontrib>MORGAN, M. K</creatorcontrib><creatorcontrib>JOHNSTON, I. H</creatorcontrib><title>Computer modelling of the cerebrospinal fluid flow dynamics of aqueduct stenosis</title><title>Medical & biological engineering & computing</title><addtitle>Med Biol Eng Comput</addtitle><description>As the craniospinal space is a pressure loaded system it is difficult to conceptualize and understand the flow dynamics through the ventricular system. Aqueduct stenosis compromises flow, increasing the pressure required to move cerebrospinal fluid (CSF) through the ventricles. Under normal circumstances, less than one pascal (1 Pa) of pressure is required to move a physiological flow of CSF through the aqueduct. This is too small to measure using clinical pressure transducers. A computational fluid dynamics (CFD) program, CFX, has been used to model two forms of aqueduct stenosis: simple narrowing and forking of the aqueduct. This study shows that with mild stenoses, the increase in pressure required to drive flow becomes significant (86-125 Pa), which may result in an increased transmantle pressure difference but not necessarily an increased intraventricular pressure. Severe stenoses will result in both. Wall shear stresses increase concomitantly and may contribute to local damage of the aqueduct wall and further gliosis with narrowing.</description><subject>Biological and medical sciences</subject><subject>Cerebrospinal Fluid</subject><subject>Cerebrospinal Fluid Pressure</subject><subject>Cerebrospinal fluid. Meninges. Spinal cord</subject><subject>Computational Biology</subject><subject>Computer Simulation</subject><subject>Fluid dynamics</subject><subject>Fluid Shifts</subject><subject>Humans</subject><subject>Hydrocephalus - physiopathology</subject><subject>Medical sciences</subject><subject>Models, Biological</subject><subject>Nervous system (semeiology, syndromes)</subject><subject>Neurology</subject><subject>Space life sciences</subject><issn>0140-0118</issn><issn>1741-0444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp90c9LHDEUB_BQLN2t7aV_gAwiFQrTviRvksxRF7WFhXrQ85DJDx2ZmazJDMX_3mx3QfHg5b3Lhy_vByHfKPykAPLX-SWwinIm5AeypBJpCYh4QJZAEUqgVC3I55QeABitGH4iCwq8Fgr5klyvwrCZJxeLIVjX9914VwRfTPeuMC66Noa06UbdF76fO5tr-FfYp1EPnUlbqB9nZ2czFWlyY0hd-kI-et0n93XfD8nt5cXN6ne5_nv1Z3W2Lg2XdCrRtnl0b33NwdTAVN163kojQOvWgalQu6ryKLmQyknKLWjGmBOAYD1yfkhOd7mbGPIMaWqGLpm8gR5dmFMjK6yEUFRk-f1dKWolJaeY4fEb-BDmmJfPBqUCRf-n_dghk0-TovPNJnaDjk8NhWb7jublHRkf7RPndnD2Fd3dP4OTPdDJ6N5HPZouvTihGEfkzyOdkEQ</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>JACOBSON, E. E</creator><creator>FLETCHER, D. F</creator><creator>MORGAN, M. K</creator><creator>JOHNSTON, I. H</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7SC</scope><scope>7TB</scope><scope>7TS</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>L.-</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope><scope>7TK</scope></search><sort><creationdate>1999</creationdate><title>Computer modelling of the cerebrospinal fluid flow dynamics of aqueduct stenosis</title><author>JACOBSON, E. E ; FLETCHER, D. F ; MORGAN, M. K ; JOHNSTON, I. H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-4db007fdf930c90289bf3b7c60aabe0c54ae55f473678e713d0a222e6040df433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Biological and medical sciences</topic><topic>Cerebrospinal Fluid</topic><topic>Cerebrospinal Fluid Pressure</topic><topic>Cerebrospinal fluid. Meninges. Spinal cord</topic><topic>Computational Biology</topic><topic>Computer Simulation</topic><topic>Fluid dynamics</topic><topic>Fluid Shifts</topic><topic>Humans</topic><topic>Hydrocephalus - physiopathology</topic><topic>Medical sciences</topic><topic>Models, Biological</topic><topic>Nervous system (semeiology, syndromes)</topic><topic>Neurology</topic><topic>Space life sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>JACOBSON, E. E</creatorcontrib><creatorcontrib>FLETCHER, D. F</creatorcontrib><creatorcontrib>MORGAN, M. K</creatorcontrib><creatorcontrib>JOHNSTON, I. H</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><jtitle>Medical & biological engineering & computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>JACOBSON, E. E</au><au>FLETCHER, D. F</au><au>MORGAN, M. K</au><au>JOHNSTON, I. H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computer modelling of the cerebrospinal fluid flow dynamics of aqueduct stenosis</atitle><jtitle>Medical & biological engineering & computing</jtitle><addtitle>Med Biol Eng Comput</addtitle><date>1999</date><risdate>1999</risdate><volume>37</volume><issue>1</issue><spage>59</spage><epage>63</epage><pages>59-63</pages><issn>0140-0118</issn><eissn>1741-0444</eissn><abstract>As the craniospinal space is a pressure loaded system it is difficult to conceptualize and understand the flow dynamics through the ventricular system. Aqueduct stenosis compromises flow, increasing the pressure required to move cerebrospinal fluid (CSF) through the ventricles. Under normal circumstances, less than one pascal (1 Pa) of pressure is required to move a physiological flow of CSF through the aqueduct. This is too small to measure using clinical pressure transducers. A computational fluid dynamics (CFD) program, CFX, has been used to model two forms of aqueduct stenosis: simple narrowing and forking of the aqueduct. This study shows that with mild stenoses, the increase in pressure required to drive flow becomes significant (86-125 Pa), which may result in an increased transmantle pressure difference but not necessarily an increased intraventricular pressure. Severe stenoses will result in both. Wall shear stresses increase concomitantly and may contribute to local damage of the aqueduct wall and further gliosis with narrowing.</abstract><cop>Heidelberg</cop><pub>Springer</pub><pmid>10396843</pmid><doi>10.1007/BF02513267</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0140-0118 |
ispartof | Medical & biological engineering & computing, 1999, Vol.37 (1), p.59-63 |
issn | 0140-0118 1741-0444 |
language | eng |
recordid | cdi_proquest_miscellaneous_754566816 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Biological and medical sciences Cerebrospinal Fluid Cerebrospinal Fluid Pressure Cerebrospinal fluid. Meninges. Spinal cord Computational Biology Computer Simulation Fluid dynamics Fluid Shifts Humans Hydrocephalus - physiopathology Medical sciences Models, Biological Nervous system (semeiology, syndromes) Neurology Space life sciences |
title | Computer modelling of the cerebrospinal fluid flow dynamics of aqueduct stenosis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T02%3A38%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computer%20modelling%20of%20the%20cerebrospinal%20fluid%20flow%20dynamics%20of%20aqueduct%20stenosis&rft.jtitle=Medical%20&%20biological%20engineering%20&%20computing&rft.au=JACOBSON,%20E.%20E&rft.date=1999&rft.volume=37&rft.issue=1&rft.spage=59&rft.epage=63&rft.pages=59-63&rft.issn=0140-0118&rft.eissn=1741-0444&rft_id=info:doi/10.1007/BF02513267&rft_dat=%3Cproquest_cross%3E2089410821%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=647808116&rft_id=info:pmid/10396843&rfr_iscdi=true |