Automatic epileptic seizure detection in EEGs based on line length feature and artificial neural networks

About 1% of the people in the world suffer from epilepsy. The main characteristic of epilepsy is the recurrent seizures. Careful analysis of the electroencephalogram (EEG) recordings can provide valuable information for understanding the mechanisms behind epileptic disorders. Since epileptic seizure...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neuroscience methods 2010-08, Vol.191 (1), p.101-109
Hauptverfasser: Guo, Ling, Rivero, Daniel, Dorado, Julián, Rabuñal, Juan R., Pazos, Alejandro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 109
container_issue 1
container_start_page 101
container_title Journal of neuroscience methods
container_volume 191
creator Guo, Ling
Rivero, Daniel
Dorado, Julián
Rabuñal, Juan R.
Pazos, Alejandro
description About 1% of the people in the world suffer from epilepsy. The main characteristic of epilepsy is the recurrent seizures. Careful analysis of the electroencephalogram (EEG) recordings can provide valuable information for understanding the mechanisms behind epileptic disorders. Since epileptic seizures occur irregularly and unpredictably, automatic seizure detection in EEG recordings is highly required. Wavelet transform (WT) is an effective analysis tool for non-stationary signals, such as EEGs. The line length feature reflects the waveform dimensionality changes and is a measure sensitive to variation of the signal amplitude and frequency. This paper presents a novel method for automatic epileptic seizure detection, which uses line length features based on wavelet transform multiresolution decomposition and combines with an artificial neural network (ANN) to classify the EEG signals regarding the existence of seizure or not. To the knowledge of the authors, there exists no similar work in the literature. A famous public dataset was used to evaluate the proposed method. The high accuracy obtained for three different classification problems testified the great success of the method.
doi_str_mv 10.1016/j.jneumeth.2010.05.020
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_754563001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165027010002803</els_id><sourcerecordid>754563001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-eb74c7e84cbab6705cb6a98267f003e6d4276f9094f21fcbdf6fc18319c92f403</originalsourceid><addsrcrecordid>eNqFkUtv1DAQgC1ERZeWv1D5xinL2PEjvlFVS1upEheQerMcZ0y95LHYDhX8epJuy7WnGY2-eWg-Qi4YbBkw9Wm_3Y84D1gethyWIsgtcHhDNqzRvFK6uX9LNgsoK-AaTsn7nPcAIAyod-SUgzQSarkh8XIu0-BK9BQPscfDmmWMf-eEtMOCvsRppHGku911pq3L2NGl0McRaY_jj_JAA7qy4m7sqEslhuij6-lyX3oK5XFKP_M5OQmuz_jhOZ6R7192365uqruv17dXl3eVF0qWClstvMZG-Na1SoP0rXKm4UoHgBpVJ7hWwYARgbPg2y6o4FlTM-MNDwLqM_LxOPeQpl8z5mKHmD32vRtxmrPVUkhVA7DXSdEYbrRcZ6oj6dOUc8JgDykOLv2xDOzqw-7tiw-7-rAg7eJjabx4XjG3A3b_214ELMDnI4DLS35HTDb7iKPHLqbl97ab4ms7_gGaz6Dc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>748929750</pqid></control><display><type>article</type><title>Automatic epileptic seizure detection in EEGs based on line length feature and artificial neural networks</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Guo, Ling ; Rivero, Daniel ; Dorado, Julián ; Rabuñal, Juan R. ; Pazos, Alejandro</creator><creatorcontrib>Guo, Ling ; Rivero, Daniel ; Dorado, Julián ; Rabuñal, Juan R. ; Pazos, Alejandro</creatorcontrib><description>About 1% of the people in the world suffer from epilepsy. The main characteristic of epilepsy is the recurrent seizures. Careful analysis of the electroencephalogram (EEG) recordings can provide valuable information for understanding the mechanisms behind epileptic disorders. Since epileptic seizures occur irregularly and unpredictably, automatic seizure detection in EEG recordings is highly required. Wavelet transform (WT) is an effective analysis tool for non-stationary signals, such as EEGs. The line length feature reflects the waveform dimensionality changes and is a measure sensitive to variation of the signal amplitude and frequency. This paper presents a novel method for automatic epileptic seizure detection, which uses line length features based on wavelet transform multiresolution decomposition and combines with an artificial neural network (ANN) to classify the EEG signals regarding the existence of seizure or not. To the knowledge of the authors, there exists no similar work in the literature. A famous public dataset was used to evaluate the proposed method. The high accuracy obtained for three different classification problems testified the great success of the method.</description><identifier>ISSN: 0165-0270</identifier><identifier>EISSN: 1872-678X</identifier><identifier>DOI: 10.1016/j.jneumeth.2010.05.020</identifier><identifier>PMID: 20595035</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Algorithms ; Artificial Intelligence ; Artificial neural network (ANN) ; Databases as Topic - classification ; Databases as Topic - standards ; Discrete wavelet transform (DWT) ; Electroencephalogram (EEG) ; Electroencephalography - classification ; Electroencephalography - methods ; Epilepsy - classification ; Epilepsy - diagnosis ; Epilepsy - physiopathology ; Epileptic seizure detection ; Evoked Potentials - physiology ; Fourier Analysis ; Humans ; Line length feature ; Neural Networks (Computer) ; Pattern Recognition, Automated - classification ; Pattern Recognition, Automated - methods ; Predictive Value of Tests ; Signal Processing, Computer-Assisted ; Software - classification ; Software - standards ; Time Factors</subject><ispartof>Journal of neuroscience methods, 2010-08, Vol.191 (1), p.101-109</ispartof><rights>2010 Elsevier B.V.</rights><rights>(c) 2010 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-eb74c7e84cbab6705cb6a98267f003e6d4276f9094f21fcbdf6fc18319c92f403</citedby><cites>FETCH-LOGICAL-c465t-eb74c7e84cbab6705cb6a98267f003e6d4276f9094f21fcbdf6fc18319c92f403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0165027010002803$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20595035$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Ling</creatorcontrib><creatorcontrib>Rivero, Daniel</creatorcontrib><creatorcontrib>Dorado, Julián</creatorcontrib><creatorcontrib>Rabuñal, Juan R.</creatorcontrib><creatorcontrib>Pazos, Alejandro</creatorcontrib><title>Automatic epileptic seizure detection in EEGs based on line length feature and artificial neural networks</title><title>Journal of neuroscience methods</title><addtitle>J Neurosci Methods</addtitle><description>About 1% of the people in the world suffer from epilepsy. The main characteristic of epilepsy is the recurrent seizures. Careful analysis of the electroencephalogram (EEG) recordings can provide valuable information for understanding the mechanisms behind epileptic disorders. Since epileptic seizures occur irregularly and unpredictably, automatic seizure detection in EEG recordings is highly required. Wavelet transform (WT) is an effective analysis tool for non-stationary signals, such as EEGs. The line length feature reflects the waveform dimensionality changes and is a measure sensitive to variation of the signal amplitude and frequency. This paper presents a novel method for automatic epileptic seizure detection, which uses line length features based on wavelet transform multiresolution decomposition and combines with an artificial neural network (ANN) to classify the EEG signals regarding the existence of seizure or not. To the knowledge of the authors, there exists no similar work in the literature. A famous public dataset was used to evaluate the proposed method. The high accuracy obtained for three different classification problems testified the great success of the method.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Artificial neural network (ANN)</subject><subject>Databases as Topic - classification</subject><subject>Databases as Topic - standards</subject><subject>Discrete wavelet transform (DWT)</subject><subject>Electroencephalogram (EEG)</subject><subject>Electroencephalography - classification</subject><subject>Electroencephalography - methods</subject><subject>Epilepsy - classification</subject><subject>Epilepsy - diagnosis</subject><subject>Epilepsy - physiopathology</subject><subject>Epileptic seizure detection</subject><subject>Evoked Potentials - physiology</subject><subject>Fourier Analysis</subject><subject>Humans</subject><subject>Line length feature</subject><subject>Neural Networks (Computer)</subject><subject>Pattern Recognition, Automated - classification</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Predictive Value of Tests</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Software - classification</subject><subject>Software - standards</subject><subject>Time Factors</subject><issn>0165-0270</issn><issn>1872-678X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtv1DAQgC1ERZeWv1D5xinL2PEjvlFVS1upEheQerMcZ0y95LHYDhX8epJuy7WnGY2-eWg-Qi4YbBkw9Wm_3Y84D1gethyWIsgtcHhDNqzRvFK6uX9LNgsoK-AaTsn7nPcAIAyod-SUgzQSarkh8XIu0-BK9BQPscfDmmWMf-eEtMOCvsRppHGku911pq3L2NGl0McRaY_jj_JAA7qy4m7sqEslhuij6-lyX3oK5XFKP_M5OQmuz_jhOZ6R7192365uqruv17dXl3eVF0qWClstvMZG-Na1SoP0rXKm4UoHgBpVJ7hWwYARgbPg2y6o4FlTM-MNDwLqM_LxOPeQpl8z5mKHmD32vRtxmrPVUkhVA7DXSdEYbrRcZ6oj6dOUc8JgDykOLv2xDOzqw-7tiw-7-rAg7eJjabx4XjG3A3b_214ELMDnI4DLS35HTDb7iKPHLqbl97ab4ms7_gGaz6Dc</recordid><startdate>20100815</startdate><enddate>20100815</enddate><creator>Guo, Ling</creator><creator>Rivero, Daniel</creator><creator>Dorado, Julián</creator><creator>Rabuñal, Juan R.</creator><creator>Pazos, Alejandro</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope></search><sort><creationdate>20100815</creationdate><title>Automatic epileptic seizure detection in EEGs based on line length feature and artificial neural networks</title><author>Guo, Ling ; Rivero, Daniel ; Dorado, Julián ; Rabuñal, Juan R. ; Pazos, Alejandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-eb74c7e84cbab6705cb6a98267f003e6d4276f9094f21fcbdf6fc18319c92f403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Artificial neural network (ANN)</topic><topic>Databases as Topic - classification</topic><topic>Databases as Topic - standards</topic><topic>Discrete wavelet transform (DWT)</topic><topic>Electroencephalogram (EEG)</topic><topic>Electroencephalography - classification</topic><topic>Electroencephalography - methods</topic><topic>Epilepsy - classification</topic><topic>Epilepsy - diagnosis</topic><topic>Epilepsy - physiopathology</topic><topic>Epileptic seizure detection</topic><topic>Evoked Potentials - physiology</topic><topic>Fourier Analysis</topic><topic>Humans</topic><topic>Line length feature</topic><topic>Neural Networks (Computer)</topic><topic>Pattern Recognition, Automated - classification</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Predictive Value of Tests</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Software - classification</topic><topic>Software - standards</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Ling</creatorcontrib><creatorcontrib>Rivero, Daniel</creatorcontrib><creatorcontrib>Dorado, Julián</creatorcontrib><creatorcontrib>Rabuñal, Juan R.</creatorcontrib><creatorcontrib>Pazos, Alejandro</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><jtitle>Journal of neuroscience methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Ling</au><au>Rivero, Daniel</au><au>Dorado, Julián</au><au>Rabuñal, Juan R.</au><au>Pazos, Alejandro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic epileptic seizure detection in EEGs based on line length feature and artificial neural networks</atitle><jtitle>Journal of neuroscience methods</jtitle><addtitle>J Neurosci Methods</addtitle><date>2010-08-15</date><risdate>2010</risdate><volume>191</volume><issue>1</issue><spage>101</spage><epage>109</epage><pages>101-109</pages><issn>0165-0270</issn><eissn>1872-678X</eissn><abstract>About 1% of the people in the world suffer from epilepsy. The main characteristic of epilepsy is the recurrent seizures. Careful analysis of the electroencephalogram (EEG) recordings can provide valuable information for understanding the mechanisms behind epileptic disorders. Since epileptic seizures occur irregularly and unpredictably, automatic seizure detection in EEG recordings is highly required. Wavelet transform (WT) is an effective analysis tool for non-stationary signals, such as EEGs. The line length feature reflects the waveform dimensionality changes and is a measure sensitive to variation of the signal amplitude and frequency. This paper presents a novel method for automatic epileptic seizure detection, which uses line length features based on wavelet transform multiresolution decomposition and combines with an artificial neural network (ANN) to classify the EEG signals regarding the existence of seizure or not. To the knowledge of the authors, there exists no similar work in the literature. A famous public dataset was used to evaluate the proposed method. The high accuracy obtained for three different classification problems testified the great success of the method.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>20595035</pmid><doi>10.1016/j.jneumeth.2010.05.020</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0165-0270
ispartof Journal of neuroscience methods, 2010-08, Vol.191 (1), p.101-109
issn 0165-0270
1872-678X
language eng
recordid cdi_proquest_miscellaneous_754563001
source MEDLINE; Elsevier ScienceDirect Journals
subjects Algorithms
Artificial Intelligence
Artificial neural network (ANN)
Databases as Topic - classification
Databases as Topic - standards
Discrete wavelet transform (DWT)
Electroencephalogram (EEG)
Electroencephalography - classification
Electroencephalography - methods
Epilepsy - classification
Epilepsy - diagnosis
Epilepsy - physiopathology
Epileptic seizure detection
Evoked Potentials - physiology
Fourier Analysis
Humans
Line length feature
Neural Networks (Computer)
Pattern Recognition, Automated - classification
Pattern Recognition, Automated - methods
Predictive Value of Tests
Signal Processing, Computer-Assisted
Software - classification
Software - standards
Time Factors
title Automatic epileptic seizure detection in EEGs based on line length feature and artificial neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T07%3A08%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20epileptic%20seizure%20detection%20in%20EEGs%20based%20on%20line%20length%20feature%20and%20artificial%20neural%20networks&rft.jtitle=Journal%20of%20neuroscience%20methods&rft.au=Guo,%20Ling&rft.date=2010-08-15&rft.volume=191&rft.issue=1&rft.spage=101&rft.epage=109&rft.pages=101-109&rft.issn=0165-0270&rft.eissn=1872-678X&rft_id=info:doi/10.1016/j.jneumeth.2010.05.020&rft_dat=%3Cproquest_cross%3E754563001%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=748929750&rft_id=info:pmid/20595035&rft_els_id=S0165027010002803&rfr_iscdi=true