Automatic epileptic seizure detection in EEGs based on line length feature and artificial neural networks
About 1% of the people in the world suffer from epilepsy. The main characteristic of epilepsy is the recurrent seizures. Careful analysis of the electroencephalogram (EEG) recordings can provide valuable information for understanding the mechanisms behind epileptic disorders. Since epileptic seizure...
Gespeichert in:
Veröffentlicht in: | Journal of neuroscience methods 2010-08, Vol.191 (1), p.101-109 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 109 |
---|---|
container_issue | 1 |
container_start_page | 101 |
container_title | Journal of neuroscience methods |
container_volume | 191 |
creator | Guo, Ling Rivero, Daniel Dorado, Julián Rabuñal, Juan R. Pazos, Alejandro |
description | About 1% of the people in the world suffer from epilepsy. The main characteristic of epilepsy is the recurrent seizures. Careful analysis of the electroencephalogram (EEG) recordings can provide valuable information for understanding the mechanisms behind epileptic disorders. Since epileptic seizures occur irregularly and unpredictably, automatic seizure detection in EEG recordings is highly required. Wavelet transform (WT) is an effective analysis tool for non-stationary signals, such as EEGs. The line length feature reflects the waveform dimensionality changes and is a measure sensitive to variation of the signal amplitude and frequency. This paper presents a novel method for automatic epileptic seizure detection, which uses line length features based on wavelet transform multiresolution decomposition and combines with an artificial neural network (ANN) to classify the EEG signals regarding the existence of seizure or not. To the knowledge of the authors, there exists no similar work in the literature. A famous public dataset was used to evaluate the proposed method. The high accuracy obtained for three different classification problems testified the great success of the method. |
doi_str_mv | 10.1016/j.jneumeth.2010.05.020 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_754563001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165027010002803</els_id><sourcerecordid>754563001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-eb74c7e84cbab6705cb6a98267f003e6d4276f9094f21fcbdf6fc18319c92f403</originalsourceid><addsrcrecordid>eNqFkUtv1DAQgC1ERZeWv1D5xinL2PEjvlFVS1upEheQerMcZ0y95LHYDhX8epJuy7WnGY2-eWg-Qi4YbBkw9Wm_3Y84D1gethyWIsgtcHhDNqzRvFK6uX9LNgsoK-AaTsn7nPcAIAyod-SUgzQSarkh8XIu0-BK9BQPscfDmmWMf-eEtMOCvsRppHGku911pq3L2NGl0McRaY_jj_JAA7qy4m7sqEslhuij6-lyX3oK5XFKP_M5OQmuz_jhOZ6R7192365uqruv17dXl3eVF0qWClstvMZG-Na1SoP0rXKm4UoHgBpVJ7hWwYARgbPg2y6o4FlTM-MNDwLqM_LxOPeQpl8z5mKHmD32vRtxmrPVUkhVA7DXSdEYbrRcZ6oj6dOUc8JgDykOLv2xDOzqw-7tiw-7-rAg7eJjabx4XjG3A3b_214ELMDnI4DLS35HTDb7iKPHLqbl97ab4ms7_gGaz6Dc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>748929750</pqid></control><display><type>article</type><title>Automatic epileptic seizure detection in EEGs based on line length feature and artificial neural networks</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Guo, Ling ; Rivero, Daniel ; Dorado, Julián ; Rabuñal, Juan R. ; Pazos, Alejandro</creator><creatorcontrib>Guo, Ling ; Rivero, Daniel ; Dorado, Julián ; Rabuñal, Juan R. ; Pazos, Alejandro</creatorcontrib><description>About 1% of the people in the world suffer from epilepsy. The main characteristic of epilepsy is the recurrent seizures. Careful analysis of the electroencephalogram (EEG) recordings can provide valuable information for understanding the mechanisms behind epileptic disorders. Since epileptic seizures occur irregularly and unpredictably, automatic seizure detection in EEG recordings is highly required. Wavelet transform (WT) is an effective analysis tool for non-stationary signals, such as EEGs. The line length feature reflects the waveform dimensionality changes and is a measure sensitive to variation of the signal amplitude and frequency. This paper presents a novel method for automatic epileptic seizure detection, which uses line length features based on wavelet transform multiresolution decomposition and combines with an artificial neural network (ANN) to classify the EEG signals regarding the existence of seizure or not. To the knowledge of the authors, there exists no similar work in the literature. A famous public dataset was used to evaluate the proposed method. The high accuracy obtained for three different classification problems testified the great success of the method.</description><identifier>ISSN: 0165-0270</identifier><identifier>EISSN: 1872-678X</identifier><identifier>DOI: 10.1016/j.jneumeth.2010.05.020</identifier><identifier>PMID: 20595035</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Algorithms ; Artificial Intelligence ; Artificial neural network (ANN) ; Databases as Topic - classification ; Databases as Topic - standards ; Discrete wavelet transform (DWT) ; Electroencephalogram (EEG) ; Electroencephalography - classification ; Electroencephalography - methods ; Epilepsy - classification ; Epilepsy - diagnosis ; Epilepsy - physiopathology ; Epileptic seizure detection ; Evoked Potentials - physiology ; Fourier Analysis ; Humans ; Line length feature ; Neural Networks (Computer) ; Pattern Recognition, Automated - classification ; Pattern Recognition, Automated - methods ; Predictive Value of Tests ; Signal Processing, Computer-Assisted ; Software - classification ; Software - standards ; Time Factors</subject><ispartof>Journal of neuroscience methods, 2010-08, Vol.191 (1), p.101-109</ispartof><rights>2010 Elsevier B.V.</rights><rights>(c) 2010 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-eb74c7e84cbab6705cb6a98267f003e6d4276f9094f21fcbdf6fc18319c92f403</citedby><cites>FETCH-LOGICAL-c465t-eb74c7e84cbab6705cb6a98267f003e6d4276f9094f21fcbdf6fc18319c92f403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0165027010002803$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20595035$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Ling</creatorcontrib><creatorcontrib>Rivero, Daniel</creatorcontrib><creatorcontrib>Dorado, Julián</creatorcontrib><creatorcontrib>Rabuñal, Juan R.</creatorcontrib><creatorcontrib>Pazos, Alejandro</creatorcontrib><title>Automatic epileptic seizure detection in EEGs based on line length feature and artificial neural networks</title><title>Journal of neuroscience methods</title><addtitle>J Neurosci Methods</addtitle><description>About 1% of the people in the world suffer from epilepsy. The main characteristic of epilepsy is the recurrent seizures. Careful analysis of the electroencephalogram (EEG) recordings can provide valuable information for understanding the mechanisms behind epileptic disorders. Since epileptic seizures occur irregularly and unpredictably, automatic seizure detection in EEG recordings is highly required. Wavelet transform (WT) is an effective analysis tool for non-stationary signals, such as EEGs. The line length feature reflects the waveform dimensionality changes and is a measure sensitive to variation of the signal amplitude and frequency. This paper presents a novel method for automatic epileptic seizure detection, which uses line length features based on wavelet transform multiresolution decomposition and combines with an artificial neural network (ANN) to classify the EEG signals regarding the existence of seizure or not. To the knowledge of the authors, there exists no similar work in the literature. A famous public dataset was used to evaluate the proposed method. The high accuracy obtained for three different classification problems testified the great success of the method.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Artificial neural network (ANN)</subject><subject>Databases as Topic - classification</subject><subject>Databases as Topic - standards</subject><subject>Discrete wavelet transform (DWT)</subject><subject>Electroencephalogram (EEG)</subject><subject>Electroencephalography - classification</subject><subject>Electroencephalography - methods</subject><subject>Epilepsy - classification</subject><subject>Epilepsy - diagnosis</subject><subject>Epilepsy - physiopathology</subject><subject>Epileptic seizure detection</subject><subject>Evoked Potentials - physiology</subject><subject>Fourier Analysis</subject><subject>Humans</subject><subject>Line length feature</subject><subject>Neural Networks (Computer)</subject><subject>Pattern Recognition, Automated - classification</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Predictive Value of Tests</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Software - classification</subject><subject>Software - standards</subject><subject>Time Factors</subject><issn>0165-0270</issn><issn>1872-678X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtv1DAQgC1ERZeWv1D5xinL2PEjvlFVS1upEheQerMcZ0y95LHYDhX8epJuy7WnGY2-eWg-Qi4YbBkw9Wm_3Y84D1gethyWIsgtcHhDNqzRvFK6uX9LNgsoK-AaTsn7nPcAIAyod-SUgzQSarkh8XIu0-BK9BQPscfDmmWMf-eEtMOCvsRppHGku911pq3L2NGl0McRaY_jj_JAA7qy4m7sqEslhuij6-lyX3oK5XFKP_M5OQmuz_jhOZ6R7192365uqruv17dXl3eVF0qWClstvMZG-Na1SoP0rXKm4UoHgBpVJ7hWwYARgbPg2y6o4FlTM-MNDwLqM_LxOPeQpl8z5mKHmD32vRtxmrPVUkhVA7DXSdEYbrRcZ6oj6dOUc8JgDykOLv2xDOzqw-7tiw-7-rAg7eJjabx4XjG3A3b_214ELMDnI4DLS35HTDb7iKPHLqbl97ab4ms7_gGaz6Dc</recordid><startdate>20100815</startdate><enddate>20100815</enddate><creator>Guo, Ling</creator><creator>Rivero, Daniel</creator><creator>Dorado, Julián</creator><creator>Rabuñal, Juan R.</creator><creator>Pazos, Alejandro</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope></search><sort><creationdate>20100815</creationdate><title>Automatic epileptic seizure detection in EEGs based on line length feature and artificial neural networks</title><author>Guo, Ling ; Rivero, Daniel ; Dorado, Julián ; Rabuñal, Juan R. ; Pazos, Alejandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-eb74c7e84cbab6705cb6a98267f003e6d4276f9094f21fcbdf6fc18319c92f403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Artificial neural network (ANN)</topic><topic>Databases as Topic - classification</topic><topic>Databases as Topic - standards</topic><topic>Discrete wavelet transform (DWT)</topic><topic>Electroencephalogram (EEG)</topic><topic>Electroencephalography - classification</topic><topic>Electroencephalography - methods</topic><topic>Epilepsy - classification</topic><topic>Epilepsy - diagnosis</topic><topic>Epilepsy - physiopathology</topic><topic>Epileptic seizure detection</topic><topic>Evoked Potentials - physiology</topic><topic>Fourier Analysis</topic><topic>Humans</topic><topic>Line length feature</topic><topic>Neural Networks (Computer)</topic><topic>Pattern Recognition, Automated - classification</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Predictive Value of Tests</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Software - classification</topic><topic>Software - standards</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Ling</creatorcontrib><creatorcontrib>Rivero, Daniel</creatorcontrib><creatorcontrib>Dorado, Julián</creatorcontrib><creatorcontrib>Rabuñal, Juan R.</creatorcontrib><creatorcontrib>Pazos, Alejandro</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><jtitle>Journal of neuroscience methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Ling</au><au>Rivero, Daniel</au><au>Dorado, Julián</au><au>Rabuñal, Juan R.</au><au>Pazos, Alejandro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic epileptic seizure detection in EEGs based on line length feature and artificial neural networks</atitle><jtitle>Journal of neuroscience methods</jtitle><addtitle>J Neurosci Methods</addtitle><date>2010-08-15</date><risdate>2010</risdate><volume>191</volume><issue>1</issue><spage>101</spage><epage>109</epage><pages>101-109</pages><issn>0165-0270</issn><eissn>1872-678X</eissn><abstract>About 1% of the people in the world suffer from epilepsy. The main characteristic of epilepsy is the recurrent seizures. Careful analysis of the electroencephalogram (EEG) recordings can provide valuable information for understanding the mechanisms behind epileptic disorders. Since epileptic seizures occur irregularly and unpredictably, automatic seizure detection in EEG recordings is highly required. Wavelet transform (WT) is an effective analysis tool for non-stationary signals, such as EEGs. The line length feature reflects the waveform dimensionality changes and is a measure sensitive to variation of the signal amplitude and frequency. This paper presents a novel method for automatic epileptic seizure detection, which uses line length features based on wavelet transform multiresolution decomposition and combines with an artificial neural network (ANN) to classify the EEG signals regarding the existence of seizure or not. To the knowledge of the authors, there exists no similar work in the literature. A famous public dataset was used to evaluate the proposed method. The high accuracy obtained for three different classification problems testified the great success of the method.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>20595035</pmid><doi>10.1016/j.jneumeth.2010.05.020</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0165-0270 |
ispartof | Journal of neuroscience methods, 2010-08, Vol.191 (1), p.101-109 |
issn | 0165-0270 1872-678X |
language | eng |
recordid | cdi_proquest_miscellaneous_754563001 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Algorithms Artificial Intelligence Artificial neural network (ANN) Databases as Topic - classification Databases as Topic - standards Discrete wavelet transform (DWT) Electroencephalogram (EEG) Electroencephalography - classification Electroencephalography - methods Epilepsy - classification Epilepsy - diagnosis Epilepsy - physiopathology Epileptic seizure detection Evoked Potentials - physiology Fourier Analysis Humans Line length feature Neural Networks (Computer) Pattern Recognition, Automated - classification Pattern Recognition, Automated - methods Predictive Value of Tests Signal Processing, Computer-Assisted Software - classification Software - standards Time Factors |
title | Automatic epileptic seizure detection in EEGs based on line length feature and artificial neural networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T07%3A08%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20epileptic%20seizure%20detection%20in%20EEGs%20based%20on%20line%20length%20feature%20and%20artificial%20neural%20networks&rft.jtitle=Journal%20of%20neuroscience%20methods&rft.au=Guo,%20Ling&rft.date=2010-08-15&rft.volume=191&rft.issue=1&rft.spage=101&rft.epage=109&rft.pages=101-109&rft.issn=0165-0270&rft.eissn=1872-678X&rft_id=info:doi/10.1016/j.jneumeth.2010.05.020&rft_dat=%3Cproquest_cross%3E754563001%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=748929750&rft_id=info:pmid/20595035&rft_els_id=S0165027010002803&rfr_iscdi=true |