Effect of simulated microgravity on growth and production of exopolymeric substances of Micrococcus luteus space and earth isolates
Microorganisms tend to form biofilms on surfaces, thereby causing deterioration of the underlaying material. In addition, biofilm is a potential health risk to humans. Therefore, microorganism growth is not only an issue on Earth but also in manned space habitats like the International Space Station...
Gespeichert in:
Veröffentlicht in: | FEMS immunology and medical microbiology 2010-08, Vol.59 (3), p.350-356 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 356 |
---|---|
container_issue | 3 |
container_start_page | 350 |
container_title | FEMS immunology and medical microbiology |
container_volume | 59 |
creator | Mauclaire, Laurie Egli, Marcel |
description | Microorganisms tend to form biofilms on surfaces, thereby causing deterioration of the underlaying material. In addition, biofilm is a potential health risk to humans. Therefore, microorganism growth is not only an issue on Earth but also in manned space habitats like the International Space Station (ISS). The aim of the study was to identify physiological processes relevant for Micrococcus luteus attachment under microgravity conditions. The results demonstrate that simulated microgravity influences physiological processes which trigger bacterial attachment and biofilm formation. The ISS strains produced larger amounts of exopolymeric substances (EPS) compared with a reference strain from Earth. In contrast, M. luteus strains were growing faster, and Earth as well as ISS isolates produced a higher yield of biomass under microgravity conditions than under normal gravity. Furthermore, microgravity caused a reduction of the colloidal EPS production of ISS isolates in comparison with normal gravity, which probably influences biofilm thickness and stability as well. |
doi_str_mv | 10.1111/j.1574-695X.2010.00683.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_754561775</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1111/j.1574-695X.2010.00683.x</oup_id><sourcerecordid>754561775</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5573-17c475cf5e8474dd370595af1bff48cd787876bf474bcb98e53a2969aeb13d933</originalsourceid><addsrcrecordid>eNqNkV2L1DAUhoMo7rj6FzQg4lXHpPkseCPLri7s4oUueBfSNBk7tE1NGnfm2j9uOh1XEMVNLgLnPO_5yAsAxGiN83mzXWMmaMEr9mVdohxFiEuy3j0Aq7vEQ7BCVSkLWVJ6Ap7EuEUI0Qqhx-CkRFSWnOAV-HHunDUT9A7Gtk-dnmwD-9YEvwn6ezvtoR_gJvjb6SvUQwPH4JtkpjZHs8Tu_Oi7fW9Da2BMdZz0YGycU9dzDeONSRF2abL5iaM29lDF6pDrtdHP_eJT8MjpLtpnx_cU3Fycfz77UFx9fH959u6qMIwJUmBhqGDGMSupoE1DBGIV0w7XzlFpGiHz5bXLydrUlbSM6LLilbY1Jk1FyCl4vdTNS3xLNk6qb6OxXacH61NUglHGsRDsXiShktP_k4QijImcu7_8g9z6FIa8sCoJ4iXDFZ8puVD592IM1qkxtL0Oe4WRmr1XWzVbrGaL1ey9Onivdln6_Ngg1b1t7oS_zM7AqyOgo9GdC9msNv7mCMKUUZ65twt323Z2f-8B1MXlNT8sSha5T-M_xMXfpn-xqJz2Sm9CHuzmUybyUJJzhgn5CYR548Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2306251963</pqid></control><display><type>article</type><title>Effect of simulated microgravity on growth and production of exopolymeric substances of Micrococcus luteus space and earth isolates</title><source>Wiley-Blackwell Journals</source><source>MEDLINE</source><source>Oxford Journals (Firm)</source><creator>Mauclaire, Laurie ; Egli, Marcel</creator><creatorcontrib>Mauclaire, Laurie ; Egli, Marcel</creatorcontrib><description>Microorganisms tend to form biofilms on surfaces, thereby causing deterioration of the underlaying material. In addition, biofilm is a potential health risk to humans. Therefore, microorganism growth is not only an issue on Earth but also in manned space habitats like the International Space Station (ISS). The aim of the study was to identify physiological processes relevant for Micrococcus luteus attachment under microgravity conditions. The results demonstrate that simulated microgravity influences physiological processes which trigger bacterial attachment and biofilm formation. The ISS strains produced larger amounts of exopolymeric substances (EPS) compared with a reference strain from Earth. In contrast, M. luteus strains were growing faster, and Earth as well as ISS isolates produced a higher yield of biomass under microgravity conditions than under normal gravity. Furthermore, microgravity caused a reduction of the colloidal EPS production of ISS isolates in comparison with normal gravity, which probably influences biofilm thickness and stability as well.</description><identifier>ISSN: 0928-8244</identifier><identifier>EISSN: 1574-695X</identifier><identifier>EISSN: 2049-632X</identifier><identifier>DOI: 10.1111/j.1574-695X.2010.00683.x</identifier><identifier>PMID: 20482631</identifier><language>eng</language><publisher>Oxford, UK: Oxford, UK : Blackwell Publishing Ltd</publisher><subject>attachment ; Bacterial Adhesion ; Bacteriology ; biofilm ; Biofilms ; biofouling ; Biological and medical sciences ; Biomass ; Biopolymers - secretion ; Earth ; exopolymeric substances ; Fundamental and applied biological sciences. Psychology ; Gram-negative bacteria ; Gravitational physiology ; Gravity ; Health risks ; Humans ; International Space Station ; Manned space flight ; Microbiology ; Micrococcus luteus ; Micrococcus luteus - growth & development ; Micrococcus luteus - metabolism ; Micrococcus luteus - physiology ; Microgravity ; Microorganisms ; Miscellaneous ; Physiology ; Space habitats ; Strains (organisms) ; Stress, Physiological ; Weightlessness</subject><ispartof>FEMS immunology and medical microbiology, 2010-08, Vol.59 (3), p.350-356</ispartof><rights>2010 Federation of European Microbiological Societies. 2010</rights><rights>2010 Empa ‐ Laboratory for Biomaterials. Journal compilation © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd</rights><rights>2015 INIST-CNRS</rights><rights>2010 Federation of European Microbiological Societies.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5573-17c475cf5e8474dd370595af1bff48cd787876bf474bcb98e53a2969aeb13d933</citedby><cites>FETCH-LOGICAL-c5573-17c475cf5e8474dd370595af1bff48cd787876bf474bcb98e53a2969aeb13d933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1574-695X.2010.00683.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1574-695X.2010.00683.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,1411,23910,23911,25119,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23014546$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20482631$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mauclaire, Laurie</creatorcontrib><creatorcontrib>Egli, Marcel</creatorcontrib><title>Effect of simulated microgravity on growth and production of exopolymeric substances of Micrococcus luteus space and earth isolates</title><title>FEMS immunology and medical microbiology</title><addtitle>FEMS Immunol Med Microbiol</addtitle><description>Microorganisms tend to form biofilms on surfaces, thereby causing deterioration of the underlaying material. In addition, biofilm is a potential health risk to humans. Therefore, microorganism growth is not only an issue on Earth but also in manned space habitats like the International Space Station (ISS). The aim of the study was to identify physiological processes relevant for Micrococcus luteus attachment under microgravity conditions. The results demonstrate that simulated microgravity influences physiological processes which trigger bacterial attachment and biofilm formation. The ISS strains produced larger amounts of exopolymeric substances (EPS) compared with a reference strain from Earth. In contrast, M. luteus strains were growing faster, and Earth as well as ISS isolates produced a higher yield of biomass under microgravity conditions than under normal gravity. Furthermore, microgravity caused a reduction of the colloidal EPS production of ISS isolates in comparison with normal gravity, which probably influences biofilm thickness and stability as well.</description><subject>attachment</subject><subject>Bacterial Adhesion</subject><subject>Bacteriology</subject><subject>biofilm</subject><subject>Biofilms</subject><subject>biofouling</subject><subject>Biological and medical sciences</subject><subject>Biomass</subject><subject>Biopolymers - secretion</subject><subject>Earth</subject><subject>exopolymeric substances</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gram-negative bacteria</subject><subject>Gravitational physiology</subject><subject>Gravity</subject><subject>Health risks</subject><subject>Humans</subject><subject>International Space Station</subject><subject>Manned space flight</subject><subject>Microbiology</subject><subject>Micrococcus luteus</subject><subject>Micrococcus luteus - growth & development</subject><subject>Micrococcus luteus - metabolism</subject><subject>Micrococcus luteus - physiology</subject><subject>Microgravity</subject><subject>Microorganisms</subject><subject>Miscellaneous</subject><subject>Physiology</subject><subject>Space habitats</subject><subject>Strains (organisms)</subject><subject>Stress, Physiological</subject><subject>Weightlessness</subject><issn>0928-8244</issn><issn>1574-695X</issn><issn>2049-632X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkV2L1DAUhoMo7rj6FzQg4lXHpPkseCPLri7s4oUueBfSNBk7tE1NGnfm2j9uOh1XEMVNLgLnPO_5yAsAxGiN83mzXWMmaMEr9mVdohxFiEuy3j0Aq7vEQ7BCVSkLWVJ6Ap7EuEUI0Qqhx-CkRFSWnOAV-HHunDUT9A7Gtk-dnmwD-9YEvwn6ezvtoR_gJvjb6SvUQwPH4JtkpjZHs8Tu_Oi7fW9Da2BMdZz0YGycU9dzDeONSRF2abL5iaM29lDF6pDrtdHP_eJT8MjpLtpnx_cU3Fycfz77UFx9fH959u6qMIwJUmBhqGDGMSupoE1DBGIV0w7XzlFpGiHz5bXLydrUlbSM6LLilbY1Jk1FyCl4vdTNS3xLNk6qb6OxXacH61NUglHGsRDsXiShktP_k4QijImcu7_8g9z6FIa8sCoJ4iXDFZ8puVD592IM1qkxtL0Oe4WRmr1XWzVbrGaL1ey9Onivdln6_Ngg1b1t7oS_zM7AqyOgo9GdC9msNv7mCMKUUZ65twt323Z2f-8B1MXlNT8sSha5T-M_xMXfpn-xqJz2Sm9CHuzmUybyUJJzhgn5CYR548Q</recordid><startdate>201008</startdate><enddate>201008</enddate><creator>Mauclaire, Laurie</creator><creator>Egli, Marcel</creator><general>Oxford, UK : Blackwell Publishing Ltd</general><general>Blackwell Publishing Ltd</general><general>Blackwell</general><general>Oxford University Press</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>7QL</scope><scope>7T5</scope><scope>H94</scope><scope>M7N</scope></search><sort><creationdate>201008</creationdate><title>Effect of simulated microgravity on growth and production of exopolymeric substances of Micrococcus luteus space and earth isolates</title><author>Mauclaire, Laurie ; Egli, Marcel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5573-17c475cf5e8474dd370595af1bff48cd787876bf474bcb98e53a2969aeb13d933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>attachment</topic><topic>Bacterial Adhesion</topic><topic>Bacteriology</topic><topic>biofilm</topic><topic>Biofilms</topic><topic>biofouling</topic><topic>Biological and medical sciences</topic><topic>Biomass</topic><topic>Biopolymers - secretion</topic><topic>Earth</topic><topic>exopolymeric substances</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gram-negative bacteria</topic><topic>Gravitational physiology</topic><topic>Gravity</topic><topic>Health risks</topic><topic>Humans</topic><topic>International Space Station</topic><topic>Manned space flight</topic><topic>Microbiology</topic><topic>Micrococcus luteus</topic><topic>Micrococcus luteus - growth & development</topic><topic>Micrococcus luteus - metabolism</topic><topic>Micrococcus luteus - physiology</topic><topic>Microgravity</topic><topic>Microorganisms</topic><topic>Miscellaneous</topic><topic>Physiology</topic><topic>Space habitats</topic><topic>Strains (organisms)</topic><topic>Stress, Physiological</topic><topic>Weightlessness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mauclaire, Laurie</creatorcontrib><creatorcontrib>Egli, Marcel</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><jtitle>FEMS immunology and medical microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mauclaire, Laurie</au><au>Egli, Marcel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of simulated microgravity on growth and production of exopolymeric substances of Micrococcus luteus space and earth isolates</atitle><jtitle>FEMS immunology and medical microbiology</jtitle><addtitle>FEMS Immunol Med Microbiol</addtitle><date>2010-08</date><risdate>2010</risdate><volume>59</volume><issue>3</issue><spage>350</spage><epage>356</epage><pages>350-356</pages><issn>0928-8244</issn><eissn>1574-695X</eissn><eissn>2049-632X</eissn><abstract>Microorganisms tend to form biofilms on surfaces, thereby causing deterioration of the underlaying material. In addition, biofilm is a potential health risk to humans. Therefore, microorganism growth is not only an issue on Earth but also in manned space habitats like the International Space Station (ISS). The aim of the study was to identify physiological processes relevant for Micrococcus luteus attachment under microgravity conditions. The results demonstrate that simulated microgravity influences physiological processes which trigger bacterial attachment and biofilm formation. The ISS strains produced larger amounts of exopolymeric substances (EPS) compared with a reference strain from Earth. In contrast, M. luteus strains were growing faster, and Earth as well as ISS isolates produced a higher yield of biomass under microgravity conditions than under normal gravity. Furthermore, microgravity caused a reduction of the colloidal EPS production of ISS isolates in comparison with normal gravity, which probably influences biofilm thickness and stability as well.</abstract><cop>Oxford, UK</cop><pub>Oxford, UK : Blackwell Publishing Ltd</pub><pmid>20482631</pmid><doi>10.1111/j.1574-695X.2010.00683.x</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0928-8244 |
ispartof | FEMS immunology and medical microbiology, 2010-08, Vol.59 (3), p.350-356 |
issn | 0928-8244 1574-695X 2049-632X |
language | eng |
recordid | cdi_proquest_miscellaneous_754561775 |
source | Wiley-Blackwell Journals; MEDLINE; Oxford Journals (Firm) |
subjects | attachment Bacterial Adhesion Bacteriology biofilm Biofilms biofouling Biological and medical sciences Biomass Biopolymers - secretion Earth exopolymeric substances Fundamental and applied biological sciences. Psychology Gram-negative bacteria Gravitational physiology Gravity Health risks Humans International Space Station Manned space flight Microbiology Micrococcus luteus Micrococcus luteus - growth & development Micrococcus luteus - metabolism Micrococcus luteus - physiology Microgravity Microorganisms Miscellaneous Physiology Space habitats Strains (organisms) Stress, Physiological Weightlessness |
title | Effect of simulated microgravity on growth and production of exopolymeric substances of Micrococcus luteus space and earth isolates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T17%3A48%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20simulated%20microgravity%20on%20growth%20and%20production%20of%20exopolymeric%20substances%20of%20Micrococcus%20luteus%20space%20and%20earth%20isolates&rft.jtitle=FEMS%20immunology%20and%20medical%20microbiology&rft.au=Mauclaire,%20Laurie&rft.date=2010-08&rft.volume=59&rft.issue=3&rft.spage=350&rft.epage=356&rft.pages=350-356&rft.issn=0928-8244&rft.eissn=1574-695X&rft_id=info:doi/10.1111/j.1574-695X.2010.00683.x&rft_dat=%3Cproquest_cross%3E754561775%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2306251963&rft_id=info:pmid/20482631&rft_oup_id=10.1111/j.1574-695X.2010.00683.x&rfr_iscdi=true |