Effect of simulated microgravity on growth and production of exopolymeric substances of Micrococcus luteus space and earth isolates

Microorganisms tend to form biofilms on surfaces, thereby causing deterioration of the underlaying material. In addition, biofilm is a potential health risk to humans. Therefore, microorganism growth is not only an issue on Earth but also in manned space habitats like the International Space Station...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:FEMS immunology and medical microbiology 2010-08, Vol.59 (3), p.350-356
Hauptverfasser: Mauclaire, Laurie, Egli, Marcel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 356
container_issue 3
container_start_page 350
container_title FEMS immunology and medical microbiology
container_volume 59
creator Mauclaire, Laurie
Egli, Marcel
description Microorganisms tend to form biofilms on surfaces, thereby causing deterioration of the underlaying material. In addition, biofilm is a potential health risk to humans. Therefore, microorganism growth is not only an issue on Earth but also in manned space habitats like the International Space Station (ISS). The aim of the study was to identify physiological processes relevant for Micrococcus luteus attachment under microgravity conditions. The results demonstrate that simulated microgravity influences physiological processes which trigger bacterial attachment and biofilm formation. The ISS strains produced larger amounts of exopolymeric substances (EPS) compared with a reference strain from Earth. In contrast, M. luteus strains were growing faster, and Earth as well as ISS isolates produced a higher yield of biomass under microgravity conditions than under normal gravity. Furthermore, microgravity caused a reduction of the colloidal EPS production of ISS isolates in comparison with normal gravity, which probably influences biofilm thickness and stability as well.
doi_str_mv 10.1111/j.1574-695X.2010.00683.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_754561775</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1111/j.1574-695X.2010.00683.x</oup_id><sourcerecordid>754561775</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5573-17c475cf5e8474dd370595af1bff48cd787876bf474bcb98e53a2969aeb13d933</originalsourceid><addsrcrecordid>eNqNkV2L1DAUhoMo7rj6FzQg4lXHpPkseCPLri7s4oUueBfSNBk7tE1NGnfm2j9uOh1XEMVNLgLnPO_5yAsAxGiN83mzXWMmaMEr9mVdohxFiEuy3j0Aq7vEQ7BCVSkLWVJ6Ap7EuEUI0Qqhx-CkRFSWnOAV-HHunDUT9A7Gtk-dnmwD-9YEvwn6ezvtoR_gJvjb6SvUQwPH4JtkpjZHs8Tu_Oi7fW9Da2BMdZz0YGycU9dzDeONSRF2abL5iaM29lDF6pDrtdHP_eJT8MjpLtpnx_cU3Fycfz77UFx9fH959u6qMIwJUmBhqGDGMSupoE1DBGIV0w7XzlFpGiHz5bXLydrUlbSM6LLilbY1Jk1FyCl4vdTNS3xLNk6qb6OxXacH61NUglHGsRDsXiShktP_k4QijImcu7_8g9z6FIa8sCoJ4iXDFZ8puVD592IM1qkxtL0Oe4WRmr1XWzVbrGaL1ey9Onivdln6_Ngg1b1t7oS_zM7AqyOgo9GdC9msNv7mCMKUUZ65twt323Z2f-8B1MXlNT8sSha5T-M_xMXfpn-xqJz2Sm9CHuzmUybyUJJzhgn5CYR548Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2306251963</pqid></control><display><type>article</type><title>Effect of simulated microgravity on growth and production of exopolymeric substances of Micrococcus luteus space and earth isolates</title><source>Wiley-Blackwell Journals</source><source>MEDLINE</source><source>Oxford Journals (Firm)</source><creator>Mauclaire, Laurie ; Egli, Marcel</creator><creatorcontrib>Mauclaire, Laurie ; Egli, Marcel</creatorcontrib><description>Microorganisms tend to form biofilms on surfaces, thereby causing deterioration of the underlaying material. In addition, biofilm is a potential health risk to humans. Therefore, microorganism growth is not only an issue on Earth but also in manned space habitats like the International Space Station (ISS). The aim of the study was to identify physiological processes relevant for Micrococcus luteus attachment under microgravity conditions. The results demonstrate that simulated microgravity influences physiological processes which trigger bacterial attachment and biofilm formation. The ISS strains produced larger amounts of exopolymeric substances (EPS) compared with a reference strain from Earth. In contrast, M. luteus strains were growing faster, and Earth as well as ISS isolates produced a higher yield of biomass under microgravity conditions than under normal gravity. Furthermore, microgravity caused a reduction of the colloidal EPS production of ISS isolates in comparison with normal gravity, which probably influences biofilm thickness and stability as well.</description><identifier>ISSN: 0928-8244</identifier><identifier>EISSN: 1574-695X</identifier><identifier>EISSN: 2049-632X</identifier><identifier>DOI: 10.1111/j.1574-695X.2010.00683.x</identifier><identifier>PMID: 20482631</identifier><language>eng</language><publisher>Oxford, UK: Oxford, UK : Blackwell Publishing Ltd</publisher><subject>attachment ; Bacterial Adhesion ; Bacteriology ; biofilm ; Biofilms ; biofouling ; Biological and medical sciences ; Biomass ; Biopolymers - secretion ; Earth ; exopolymeric substances ; Fundamental and applied biological sciences. Psychology ; Gram-negative bacteria ; Gravitational physiology ; Gravity ; Health risks ; Humans ; International Space Station ; Manned space flight ; Microbiology ; Micrococcus luteus ; Micrococcus luteus - growth &amp; development ; Micrococcus luteus - metabolism ; Micrococcus luteus - physiology ; Microgravity ; Microorganisms ; Miscellaneous ; Physiology ; Space habitats ; Strains (organisms) ; Stress, Physiological ; Weightlessness</subject><ispartof>FEMS immunology and medical microbiology, 2010-08, Vol.59 (3), p.350-356</ispartof><rights>2010 Federation of European Microbiological Societies. 2010</rights><rights>2010 Empa ‐ Laboratory for Biomaterials. Journal compilation © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd</rights><rights>2015 INIST-CNRS</rights><rights>2010 Federation of European Microbiological Societies.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5573-17c475cf5e8474dd370595af1bff48cd787876bf474bcb98e53a2969aeb13d933</citedby><cites>FETCH-LOGICAL-c5573-17c475cf5e8474dd370595af1bff48cd787876bf474bcb98e53a2969aeb13d933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1574-695X.2010.00683.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1574-695X.2010.00683.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,1411,23910,23911,25119,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23014546$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20482631$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mauclaire, Laurie</creatorcontrib><creatorcontrib>Egli, Marcel</creatorcontrib><title>Effect of simulated microgravity on growth and production of exopolymeric substances of Micrococcus luteus space and earth isolates</title><title>FEMS immunology and medical microbiology</title><addtitle>FEMS Immunol Med Microbiol</addtitle><description>Microorganisms tend to form biofilms on surfaces, thereby causing deterioration of the underlaying material. In addition, biofilm is a potential health risk to humans. Therefore, microorganism growth is not only an issue on Earth but also in manned space habitats like the International Space Station (ISS). The aim of the study was to identify physiological processes relevant for Micrococcus luteus attachment under microgravity conditions. The results demonstrate that simulated microgravity influences physiological processes which trigger bacterial attachment and biofilm formation. The ISS strains produced larger amounts of exopolymeric substances (EPS) compared with a reference strain from Earth. In contrast, M. luteus strains were growing faster, and Earth as well as ISS isolates produced a higher yield of biomass under microgravity conditions than under normal gravity. Furthermore, microgravity caused a reduction of the colloidal EPS production of ISS isolates in comparison with normal gravity, which probably influences biofilm thickness and stability as well.</description><subject>attachment</subject><subject>Bacterial Adhesion</subject><subject>Bacteriology</subject><subject>biofilm</subject><subject>Biofilms</subject><subject>biofouling</subject><subject>Biological and medical sciences</subject><subject>Biomass</subject><subject>Biopolymers - secretion</subject><subject>Earth</subject><subject>exopolymeric substances</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gram-negative bacteria</subject><subject>Gravitational physiology</subject><subject>Gravity</subject><subject>Health risks</subject><subject>Humans</subject><subject>International Space Station</subject><subject>Manned space flight</subject><subject>Microbiology</subject><subject>Micrococcus luteus</subject><subject>Micrococcus luteus - growth &amp; development</subject><subject>Micrococcus luteus - metabolism</subject><subject>Micrococcus luteus - physiology</subject><subject>Microgravity</subject><subject>Microorganisms</subject><subject>Miscellaneous</subject><subject>Physiology</subject><subject>Space habitats</subject><subject>Strains (organisms)</subject><subject>Stress, Physiological</subject><subject>Weightlessness</subject><issn>0928-8244</issn><issn>1574-695X</issn><issn>2049-632X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkV2L1DAUhoMo7rj6FzQg4lXHpPkseCPLri7s4oUueBfSNBk7tE1NGnfm2j9uOh1XEMVNLgLnPO_5yAsAxGiN83mzXWMmaMEr9mVdohxFiEuy3j0Aq7vEQ7BCVSkLWVJ6Ap7EuEUI0Qqhx-CkRFSWnOAV-HHunDUT9A7Gtk-dnmwD-9YEvwn6ezvtoR_gJvjb6SvUQwPH4JtkpjZHs8Tu_Oi7fW9Da2BMdZz0YGycU9dzDeONSRF2abL5iaM29lDF6pDrtdHP_eJT8MjpLtpnx_cU3Fycfz77UFx9fH959u6qMIwJUmBhqGDGMSupoE1DBGIV0w7XzlFpGiHz5bXLydrUlbSM6LLilbY1Jk1FyCl4vdTNS3xLNk6qb6OxXacH61NUglHGsRDsXiShktP_k4QijImcu7_8g9z6FIa8sCoJ4iXDFZ8puVD592IM1qkxtL0Oe4WRmr1XWzVbrGaL1ey9Onivdln6_Ngg1b1t7oS_zM7AqyOgo9GdC9msNv7mCMKUUZ65twt323Z2f-8B1MXlNT8sSha5T-M_xMXfpn-xqJz2Sm9CHuzmUybyUJJzhgn5CYR548Q</recordid><startdate>201008</startdate><enddate>201008</enddate><creator>Mauclaire, Laurie</creator><creator>Egli, Marcel</creator><general>Oxford, UK : Blackwell Publishing Ltd</general><general>Blackwell Publishing Ltd</general><general>Blackwell</general><general>Oxford University Press</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>7QL</scope><scope>7T5</scope><scope>H94</scope><scope>M7N</scope></search><sort><creationdate>201008</creationdate><title>Effect of simulated microgravity on growth and production of exopolymeric substances of Micrococcus luteus space and earth isolates</title><author>Mauclaire, Laurie ; Egli, Marcel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5573-17c475cf5e8474dd370595af1bff48cd787876bf474bcb98e53a2969aeb13d933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>attachment</topic><topic>Bacterial Adhesion</topic><topic>Bacteriology</topic><topic>biofilm</topic><topic>Biofilms</topic><topic>biofouling</topic><topic>Biological and medical sciences</topic><topic>Biomass</topic><topic>Biopolymers - secretion</topic><topic>Earth</topic><topic>exopolymeric substances</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gram-negative bacteria</topic><topic>Gravitational physiology</topic><topic>Gravity</topic><topic>Health risks</topic><topic>Humans</topic><topic>International Space Station</topic><topic>Manned space flight</topic><topic>Microbiology</topic><topic>Micrococcus luteus</topic><topic>Micrococcus luteus - growth &amp; development</topic><topic>Micrococcus luteus - metabolism</topic><topic>Micrococcus luteus - physiology</topic><topic>Microgravity</topic><topic>Microorganisms</topic><topic>Miscellaneous</topic><topic>Physiology</topic><topic>Space habitats</topic><topic>Strains (organisms)</topic><topic>Stress, Physiological</topic><topic>Weightlessness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mauclaire, Laurie</creatorcontrib><creatorcontrib>Egli, Marcel</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><jtitle>FEMS immunology and medical microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mauclaire, Laurie</au><au>Egli, Marcel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of simulated microgravity on growth and production of exopolymeric substances of Micrococcus luteus space and earth isolates</atitle><jtitle>FEMS immunology and medical microbiology</jtitle><addtitle>FEMS Immunol Med Microbiol</addtitle><date>2010-08</date><risdate>2010</risdate><volume>59</volume><issue>3</issue><spage>350</spage><epage>356</epage><pages>350-356</pages><issn>0928-8244</issn><eissn>1574-695X</eissn><eissn>2049-632X</eissn><abstract>Microorganisms tend to form biofilms on surfaces, thereby causing deterioration of the underlaying material. In addition, biofilm is a potential health risk to humans. Therefore, microorganism growth is not only an issue on Earth but also in manned space habitats like the International Space Station (ISS). The aim of the study was to identify physiological processes relevant for Micrococcus luteus attachment under microgravity conditions. The results demonstrate that simulated microgravity influences physiological processes which trigger bacterial attachment and biofilm formation. The ISS strains produced larger amounts of exopolymeric substances (EPS) compared with a reference strain from Earth. In contrast, M. luteus strains were growing faster, and Earth as well as ISS isolates produced a higher yield of biomass under microgravity conditions than under normal gravity. Furthermore, microgravity caused a reduction of the colloidal EPS production of ISS isolates in comparison with normal gravity, which probably influences biofilm thickness and stability as well.</abstract><cop>Oxford, UK</cop><pub>Oxford, UK : Blackwell Publishing Ltd</pub><pmid>20482631</pmid><doi>10.1111/j.1574-695X.2010.00683.x</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0928-8244
ispartof FEMS immunology and medical microbiology, 2010-08, Vol.59 (3), p.350-356
issn 0928-8244
1574-695X
2049-632X
language eng
recordid cdi_proquest_miscellaneous_754561775
source Wiley-Blackwell Journals; MEDLINE; Oxford Journals (Firm)
subjects attachment
Bacterial Adhesion
Bacteriology
biofilm
Biofilms
biofouling
Biological and medical sciences
Biomass
Biopolymers - secretion
Earth
exopolymeric substances
Fundamental and applied biological sciences. Psychology
Gram-negative bacteria
Gravitational physiology
Gravity
Health risks
Humans
International Space Station
Manned space flight
Microbiology
Micrococcus luteus
Micrococcus luteus - growth & development
Micrococcus luteus - metabolism
Micrococcus luteus - physiology
Microgravity
Microorganisms
Miscellaneous
Physiology
Space habitats
Strains (organisms)
Stress, Physiological
Weightlessness
title Effect of simulated microgravity on growth and production of exopolymeric substances of Micrococcus luteus space and earth isolates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T17%3A48%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20simulated%20microgravity%20on%20growth%20and%20production%20of%20exopolymeric%20substances%20of%20Micrococcus%20luteus%20space%20and%20earth%20isolates&rft.jtitle=FEMS%20immunology%20and%20medical%20microbiology&rft.au=Mauclaire,%20Laurie&rft.date=2010-08&rft.volume=59&rft.issue=3&rft.spage=350&rft.epage=356&rft.pages=350-356&rft.issn=0928-8244&rft.eissn=1574-695X&rft_id=info:doi/10.1111/j.1574-695X.2010.00683.x&rft_dat=%3Cproquest_cross%3E754561775%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2306251963&rft_id=info:pmid/20482631&rft_oup_id=10.1111/j.1574-695X.2010.00683.x&rfr_iscdi=true