Remote sensing of vegetation 3-D structure for biodiversity and habitat: Review and implications for lidar and radar spaceborne missions
Biodiversity and habitat face increasing pressures due to human and natural influences that alter vegetation structure. Because of the inherent difficulty of measuring forested vegetation three‐dimensional (3‐D) structure on the ground, this important component of biodiversity and habitat has been,...
Gespeichert in:
Veröffentlicht in: | Journal of Geophysical Research. B. Solid Earth 2009-06, Vol.114 (G2), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | G2 |
container_start_page | |
container_title | Journal of Geophysical Research. B. Solid Earth |
container_volume | 114 |
creator | Bergen, K. M. Goetz, S. J. Dubayah, R. O. Henebry, G. M. Hunsaker, C. T. Imhoff, M. L. Nelson, R. F. Parker, G. G. Radeloff, V. C. |
description | Biodiversity and habitat face increasing pressures due to human and natural influences that alter vegetation structure. Because of the inherent difficulty of measuring forested vegetation three‐dimensional (3‐D) structure on the ground, this important component of biodiversity and habitat has been, until recently, largely restricted to local measurements, or at larger scales to generalizations. New lidar and radar remote sensing instruments such as those proposed for spaceborne missions will provide the capability to fill this gap. This paper reviews the state of the art for incorporatinginformation on vegetation 3‐D structure into biodiversity and habitat science and management approaches, with emphasis on use of lidar and radar data. First we review relationships between vegetation 3‐D structure, biodiversity and habitat, and metrics commonly used to describe those relationships. Next, we review the technical capabilities of new lidar and radar sensors and their application to biodiversity and habitat studies to date. We then define variables that have been identified as both useful and feasible to retrieve from spaceborne lidar and radar observations and provide their accuracy and precision requirements. We conclude with a brief discussion of implications for spaceborne missions and research programs. The possibility to derive vegetation 3‐D measurements from spaceborne active sensors and to integrate them into science and management comes at a critical juncture for global biodiversity conservation and opens new possibilities for advanced scientific analysis of habitat and biodiversity. |
doi_str_mv | 10.1029/2008JG000883 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_754561597</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2315541861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5832-be65845f4978d5eb8124442c2b36174ed12d71a6f98d63d6343d3d1b3283db053</originalsourceid><addsrcrecordid>eNqF0c1u1DAQAOAIUYlV6Y0HsDjAhVD_2-GGCmRpqyKtQBwtJ54Ul2y8tZMt-wY8Ns5uhVAPRbJsy_5m_DNF8YLgtwTT6pRirM9rnHvNnhQLSoQsKcX0abHAhOsSU6qeFScp3WSDuZAck0XxewXrMAJKMCQ_XKPQoS1cw2hHHwbEyg8ojXFqxykC6kJEjQ_ObyEmP-6QHRz6YRuf9Tu0gq2Hu_2aX2963-5TpH1U752N-61o51na2BaaEAdAa5_S7J4XR53tE5zcj8fFt08fv54ty8sv9eez95dlKzSjZQNSaC46XintBDSaUM45bWnDJFEcHKFOESu7SjvJcuPMMUcaRjVzDRbsuHh9yLuJ4XaCNJp8gxb63g4QpmSUyF9DRKWyfPWoZJITrirxX0gJowzzOePLB_AmTHHIzzVaEkIk5TSjNwfUxpBShM5sol_buDMEm7nS5t9KZ04O_M73sHvUmvN6VQs8H1EeYnwa4dffGBt_GqmYEub7VW2WQl0sldSGsT_efbfJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861116242</pqid></control><display><type>article</type><title>Remote sensing of vegetation 3-D structure for biodiversity and habitat: Review and implications for lidar and radar spaceborne missions</title><source>Access via Wiley Online Library</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Bergen, K. M. ; Goetz, S. J. ; Dubayah, R. O. ; Henebry, G. M. ; Hunsaker, C. T. ; Imhoff, M. L. ; Nelson, R. F. ; Parker, G. G. ; Radeloff, V. C.</creator><creatorcontrib>Bergen, K. M. ; Goetz, S. J. ; Dubayah, R. O. ; Henebry, G. M. ; Hunsaker, C. T. ; Imhoff, M. L. ; Nelson, R. F. ; Parker, G. G. ; Radeloff, V. C.</creatorcontrib><description>Biodiversity and habitat face increasing pressures due to human and natural influences that alter vegetation structure. Because of the inherent difficulty of measuring forested vegetation three‐dimensional (3‐D) structure on the ground, this important component of biodiversity and habitat has been, until recently, largely restricted to local measurements, or at larger scales to generalizations. New lidar and radar remote sensing instruments such as those proposed for spaceborne missions will provide the capability to fill this gap. This paper reviews the state of the art for incorporatinginformation on vegetation 3‐D structure into biodiversity and habitat science and management approaches, with emphasis on use of lidar and radar data. First we review relationships between vegetation 3‐D structure, biodiversity and habitat, and metrics commonly used to describe those relationships. Next, we review the technical capabilities of new lidar and radar sensors and their application to biodiversity and habitat studies to date. We then define variables that have been identified as both useful and feasible to retrieve from spaceborne lidar and radar observations and provide their accuracy and precision requirements. We conclude with a brief discussion of implications for spaceborne missions and research programs. The possibility to derive vegetation 3‐D measurements from spaceborne active sensors and to integrate them into science and management comes at a critical juncture for global biodiversity conservation and opens new possibilities for advanced scientific analysis of habitat and biodiversity.</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-8953</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-8961</identifier><identifier>DOI: 10.1029/2008JG000883</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Biodiversity ; Climate change ; Earth ; Ecosystem biology ; forest structure ; Geobiology ; habitat ; Habitats ; Lidar ; Plant ecology ; Radar ; Remote sensing ; Research programs ; Sensors ; Vegetation ; vegetation structure</subject><ispartof>Journal of Geophysical Research. B. Solid Earth, 2009-06, Vol.114 (G2), p.n/a</ispartof><rights>Copyright 2009 by the American Geophysical Union.</rights><rights>Copyright 2009 by American Geophysical Union</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5832-be65845f4978d5eb8124442c2b36174ed12d71a6f98d63d6343d3d1b3283db053</citedby><cites>FETCH-LOGICAL-c5832-be65845f4978d5eb8124442c2b36174ed12d71a6f98d63d6343d3d1b3283db053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2008JG000883$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2008JG000883$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,1434,11519,27929,27930,45579,45580,46414,46473,46838,46897</link.rule.ids></links><search><creatorcontrib>Bergen, K. M.</creatorcontrib><creatorcontrib>Goetz, S. J.</creatorcontrib><creatorcontrib>Dubayah, R. O.</creatorcontrib><creatorcontrib>Henebry, G. M.</creatorcontrib><creatorcontrib>Hunsaker, C. T.</creatorcontrib><creatorcontrib>Imhoff, M. L.</creatorcontrib><creatorcontrib>Nelson, R. F.</creatorcontrib><creatorcontrib>Parker, G. G.</creatorcontrib><creatorcontrib>Radeloff, V. C.</creatorcontrib><title>Remote sensing of vegetation 3-D structure for biodiversity and habitat: Review and implications for lidar and radar spaceborne missions</title><title>Journal of Geophysical Research. B. Solid Earth</title><addtitle>J. Geophys. Res</addtitle><description>Biodiversity and habitat face increasing pressures due to human and natural influences that alter vegetation structure. Because of the inherent difficulty of measuring forested vegetation three‐dimensional (3‐D) structure on the ground, this important component of biodiversity and habitat has been, until recently, largely restricted to local measurements, or at larger scales to generalizations. New lidar and radar remote sensing instruments such as those proposed for spaceborne missions will provide the capability to fill this gap. This paper reviews the state of the art for incorporatinginformation on vegetation 3‐D structure into biodiversity and habitat science and management approaches, with emphasis on use of lidar and radar data. First we review relationships between vegetation 3‐D structure, biodiversity and habitat, and metrics commonly used to describe those relationships. Next, we review the technical capabilities of new lidar and radar sensors and their application to biodiversity and habitat studies to date. We then define variables that have been identified as both useful and feasible to retrieve from spaceborne lidar and radar observations and provide their accuracy and precision requirements. We conclude with a brief discussion of implications for spaceborne missions and research programs. The possibility to derive vegetation 3‐D measurements from spaceborne active sensors and to integrate them into science and management comes at a critical juncture for global biodiversity conservation and opens new possibilities for advanced scientific analysis of habitat and biodiversity.</description><subject>Biodiversity</subject><subject>Climate change</subject><subject>Earth</subject><subject>Ecosystem biology</subject><subject>forest structure</subject><subject>Geobiology</subject><subject>habitat</subject><subject>Habitats</subject><subject>Lidar</subject><subject>Plant ecology</subject><subject>Radar</subject><subject>Remote sensing</subject><subject>Research programs</subject><subject>Sensors</subject><subject>Vegetation</subject><subject>vegetation structure</subject><issn>0148-0227</issn><issn>2169-8953</issn><issn>2156-2202</issn><issn>2169-8961</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0c1u1DAQAOAIUYlV6Y0HsDjAhVD_2-GGCmRpqyKtQBwtJ54Ul2y8tZMt-wY8Ns5uhVAPRbJsy_5m_DNF8YLgtwTT6pRirM9rnHvNnhQLSoQsKcX0abHAhOsSU6qeFScp3WSDuZAck0XxewXrMAJKMCQ_XKPQoS1cw2hHHwbEyg8ojXFqxykC6kJEjQ_ObyEmP-6QHRz6YRuf9Tu0gq2Hu_2aX2963-5TpH1U752N-61o51na2BaaEAdAa5_S7J4XR53tE5zcj8fFt08fv54ty8sv9eez95dlKzSjZQNSaC46XintBDSaUM45bWnDJFEcHKFOESu7SjvJcuPMMUcaRjVzDRbsuHh9yLuJ4XaCNJp8gxb63g4QpmSUyF9DRKWyfPWoZJITrirxX0gJowzzOePLB_AmTHHIzzVaEkIk5TSjNwfUxpBShM5sol_buDMEm7nS5t9KZ04O_M73sHvUmvN6VQs8H1EeYnwa4dffGBt_GqmYEub7VW2WQl0sldSGsT_efbfJ</recordid><startdate>200906</startdate><enddate>200906</enddate><creator>Bergen, K. M.</creator><creator>Goetz, S. J.</creator><creator>Dubayah, R. O.</creator><creator>Henebry, G. M.</creator><creator>Hunsaker, C. T.</creator><creator>Imhoff, M. L.</creator><creator>Nelson, R. F.</creator><creator>Parker, G. G.</creator><creator>Radeloff, V. C.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>LK8</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7ST</scope><scope>7U6</scope><scope>7SM</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>200906</creationdate><title>Remote sensing of vegetation 3-D structure for biodiversity and habitat: Review and implications for lidar and radar spaceborne missions</title><author>Bergen, K. M. ; Goetz, S. J. ; Dubayah, R. O. ; Henebry, G. M. ; Hunsaker, C. T. ; Imhoff, M. L. ; Nelson, R. F. ; Parker, G. G. ; Radeloff, V. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5832-be65845f4978d5eb8124442c2b36174ed12d71a6f98d63d6343d3d1b3283db053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Biodiversity</topic><topic>Climate change</topic><topic>Earth</topic><topic>Ecosystem biology</topic><topic>forest structure</topic><topic>Geobiology</topic><topic>habitat</topic><topic>Habitats</topic><topic>Lidar</topic><topic>Plant ecology</topic><topic>Radar</topic><topic>Remote sensing</topic><topic>Research programs</topic><topic>Sensors</topic><topic>Vegetation</topic><topic>vegetation structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bergen, K. M.</creatorcontrib><creatorcontrib>Goetz, S. J.</creatorcontrib><creatorcontrib>Dubayah, R. O.</creatorcontrib><creatorcontrib>Henebry, G. M.</creatorcontrib><creatorcontrib>Hunsaker, C. T.</creatorcontrib><creatorcontrib>Imhoff, M. L.</creatorcontrib><creatorcontrib>Nelson, R. F.</creatorcontrib><creatorcontrib>Parker, G. G.</creatorcontrib><creatorcontrib>Radeloff, V. C.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Earthquake Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of Geophysical Research. B. Solid Earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bergen, K. M.</au><au>Goetz, S. J.</au><au>Dubayah, R. O.</au><au>Henebry, G. M.</au><au>Hunsaker, C. T.</au><au>Imhoff, M. L.</au><au>Nelson, R. F.</au><au>Parker, G. G.</au><au>Radeloff, V. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Remote sensing of vegetation 3-D structure for biodiversity and habitat: Review and implications for lidar and radar spaceborne missions</atitle><jtitle>Journal of Geophysical Research. B. Solid Earth</jtitle><addtitle>J. Geophys. Res</addtitle><date>2009-06</date><risdate>2009</risdate><volume>114</volume><issue>G2</issue><epage>n/a</epage><issn>0148-0227</issn><issn>2169-8953</issn><eissn>2156-2202</eissn><eissn>2169-8961</eissn><abstract>Biodiversity and habitat face increasing pressures due to human and natural influences that alter vegetation structure. Because of the inherent difficulty of measuring forested vegetation three‐dimensional (3‐D) structure on the ground, this important component of biodiversity and habitat has been, until recently, largely restricted to local measurements, or at larger scales to generalizations. New lidar and radar remote sensing instruments such as those proposed for spaceborne missions will provide the capability to fill this gap. This paper reviews the state of the art for incorporatinginformation on vegetation 3‐D structure into biodiversity and habitat science and management approaches, with emphasis on use of lidar and radar data. First we review relationships between vegetation 3‐D structure, biodiversity and habitat, and metrics commonly used to describe those relationships. Next, we review the technical capabilities of new lidar and radar sensors and their application to biodiversity and habitat studies to date. We then define variables that have been identified as both useful and feasible to retrieve from spaceborne lidar and radar observations and provide their accuracy and precision requirements. We conclude with a brief discussion of implications for spaceborne missions and research programs. The possibility to derive vegetation 3‐D measurements from spaceborne active sensors and to integrate them into science and management comes at a critical juncture for global biodiversity conservation and opens new possibilities for advanced scientific analysis of habitat and biodiversity.</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2008JG000883</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0148-0227 |
ispartof | Journal of Geophysical Research. B. Solid Earth, 2009-06, Vol.114 (G2), p.n/a |
issn | 0148-0227 2169-8953 2156-2202 2169-8961 |
language | eng |
recordid | cdi_proquest_miscellaneous_754561597 |
source | Access via Wiley Online Library; Wiley-Blackwell AGU Digital Library; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection |
subjects | Biodiversity Climate change Earth Ecosystem biology forest structure Geobiology habitat Habitats Lidar Plant ecology Radar Remote sensing Research programs Sensors Vegetation vegetation structure |
title | Remote sensing of vegetation 3-D structure for biodiversity and habitat: Review and implications for lidar and radar spaceborne missions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T16%3A22%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Remote%20sensing%20of%20vegetation%203-D%20structure%20for%20biodiversity%20and%20habitat:%20Review%20and%20implications%20for%20lidar%20and%20radar%20spaceborne%20missions&rft.jtitle=Journal%20of%20Geophysical%20Research.%20B.%20Solid%20Earth&rft.au=Bergen,%20K.%20M.&rft.date=2009-06&rft.volume=114&rft.issue=G2&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2008JG000883&rft_dat=%3Cproquest_cross%3E2315541861%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=861116242&rft_id=info:pmid/&rfr_iscdi=true |