Synthesis, Characterisation of Novel Polyaniline Nanomaterials and Application in Amperometric Biosensors
Anthracene sulfonic acid doped polyaniline nanomaterials were prepared through the chemical oxidative polymerisation process. Ammonium peroxydisulfate (APS) was employed as oxidant. Scanning electron microscopy (SEM) results show the resultant polyaniline (PANi) materials exhibited nanofibrillar mor...
Gespeichert in:
Veröffentlicht in: | Macromolecular symposia 2007-09, Vol.255 (1), p.57-69 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 69 |
---|---|
container_issue | 1 |
container_start_page | 57 |
container_title | Macromolecular symposia |
container_volume | 255 |
creator | Michira, I. Akinyeye, R. Somerset, V. Klink, M. J. Sekota, M. Al-Ahmed, A. Baker, P. G. L. Iwuoha, E. |
description | Anthracene sulfonic acid doped polyaniline nanomaterials were prepared through the chemical oxidative polymerisation process. Ammonium peroxydisulfate (APS) was employed as oxidant. Scanning electron microscopy (SEM) results show the resultant polyaniline (PANi) materials exhibited nanofibrillar morphology with diameter sizes less than 300 nm. Using the nanofibrillar PANI, amperometric biosensors for H2O2 and erythromycin were constructed through the drop‐coating technique. Anthracene sulfonic acid (ASA) doped PANi and the test enzymes horseradish peroxidase, (HRP), or cytochrome P450 3A4, (CYP4503A4) were mixed in phosphate buffer solution before drop coating onto the electrode. The resultant biosensors displayed typical Michaelis‐Menten behaviour. The apparent Michaelis‐Menten constant obtained was 0.18 ± 0.01 mM and 0.80 ± 0.02 µM L−1 for the peroxide and erythromycin biosensor respectively. The sensitivity for the peroxide sensor was 3.3 × 10−3 A · cm−2 · mM−1, and the detection limit was found to be 1.2 × 10−2 mM respectively. Similarly, the sensitivity for the erythromycin sensor was in the same order at 1.57 × 10−3 A · cm−2 · mM−1 and detection limit was found to be 7.58 × 10−2 µM. |
doi_str_mv | 10.1002/masy.200750907 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_754561473</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>30990792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4937-5e22909ebe1ac0e5f9facbdb93a338b6d7aa6d2a0d6e3d9a32eec6bf62c24ece3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhiMEEqVw5ZwLHweyjO3Ero_Lii5IZVmxIMTJmjgT1ZDYwU6B_HuySrXiVE4zh-d5R5o3y54yWDEA_rrHNK04gKpAg7qXnbGKs0JogPvzDpwXTEh4mD1K6TsAaK3YWeYOkx-vKbn0Kt9cY0Q7UnQJRxd8Htp8F35Rl-9DN6F3nfOU79CHHo8UdilH3-TrYeicXRTn83U_UAw9jdHZ_I0LiXwKMT3OHrSzQU9u53n25fLt58274urj9v1mfVXYUgtVVMS5Bk01MbRAVatbtHVTa4FCXNSyUYiy4QiNJNFoFJzIyrqV3PKSLInz7MWSO8Tw84bSaHqXLHUdego3yaiqrCQrlZjJ53eSYv4RKM1n8OWdIJOKlVyWTM7oakFtDClFas0QXY9xMgzMsSZzrMmcapqFZ7fZmCx2bURvXTpZM3hRcc1mTi_cb9fR9J9U82F9-PbvjWJxXRrpz8nF-MNIJVRlvu625rA5bLf7_SdzKf4CCim2GQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671426416</pqid></control><display><type>article</type><title>Synthesis, Characterisation of Novel Polyaniline Nanomaterials and Application in Amperometric Biosensors</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Michira, I. ; Akinyeye, R. ; Somerset, V. ; Klink, M. J. ; Sekota, M. ; Al-Ahmed, A. ; Baker, P. G. L. ; Iwuoha, E.</creator><creatorcontrib>Michira, I. ; Akinyeye, R. ; Somerset, V. ; Klink, M. J. ; Sekota, M. ; Al-Ahmed, A. ; Baker, P. G. L. ; Iwuoha, E.</creatorcontrib><description>Anthracene sulfonic acid doped polyaniline nanomaterials were prepared through the chemical oxidative polymerisation process. Ammonium peroxydisulfate (APS) was employed as oxidant. Scanning electron microscopy (SEM) results show the resultant polyaniline (PANi) materials exhibited nanofibrillar morphology with diameter sizes less than 300 nm. Using the nanofibrillar PANI, amperometric biosensors for H2O2 and erythromycin were constructed through the drop‐coating technique. Anthracene sulfonic acid (ASA) doped PANi and the test enzymes horseradish peroxidase, (HRP), or cytochrome P450 3A4, (CYP4503A4) were mixed in phosphate buffer solution before drop coating onto the electrode. The resultant biosensors displayed typical Michaelis‐Menten behaviour. The apparent Michaelis‐Menten constant obtained was 0.18 ± 0.01 mM and 0.80 ± 0.02 µM L−1 for the peroxide and erythromycin biosensor respectively. The sensitivity for the peroxide sensor was 3.3 × 10−3 A · cm−2 · mM−1, and the detection limit was found to be 1.2 × 10−2 mM respectively. Similarly, the sensitivity for the erythromycin sensor was in the same order at 1.57 × 10−3 A · cm−2 · mM−1 and detection limit was found to be 7.58 × 10−2 µM.</description><identifier>ISSN: 1022-1360</identifier><identifier>EISSN: 1521-3900</identifier><identifier>DOI: 10.1002/masy.200750907</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Applied sciences ; Biological and medical sciences ; Biosensors ; Biotechnology ; doped polyaniline ; Electrical measurements ; electroactive ; enzymes ; Erythromycin ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; Methods. Procedures. Technologies ; nanocomposites ; Nanomaterials ; Nanostructure ; Organic polymers ; Peroxides ; Physicochemistry of polymers ; Polyanilines ; Polymers with particular properties ; Preparation, kinetics, thermodynamics, mechanism and catalysts ; Resultants ; synthesis ; Various methods and equipments</subject><ispartof>Macromolecular symposia, 2007-09, Vol.255 (1), p.57-69</ispartof><rights>Copyright © 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4937-5e22909ebe1ac0e5f9facbdb93a338b6d7aa6d2a0d6e3d9a32eec6bf62c24ece3</citedby><cites>FETCH-LOGICAL-c4937-5e22909ebe1ac0e5f9facbdb93a338b6d7aa6d2a0d6e3d9a32eec6bf62c24ece3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmasy.200750907$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmasy.200750907$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,1416,23929,23930,25139,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20085291$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Michira, I.</creatorcontrib><creatorcontrib>Akinyeye, R.</creatorcontrib><creatorcontrib>Somerset, V.</creatorcontrib><creatorcontrib>Klink, M. J.</creatorcontrib><creatorcontrib>Sekota, M.</creatorcontrib><creatorcontrib>Al-Ahmed, A.</creatorcontrib><creatorcontrib>Baker, P. G. L.</creatorcontrib><creatorcontrib>Iwuoha, E.</creatorcontrib><title>Synthesis, Characterisation of Novel Polyaniline Nanomaterials and Application in Amperometric Biosensors</title><title>Macromolecular symposia</title><addtitle>Macromol. Symp</addtitle><description>Anthracene sulfonic acid doped polyaniline nanomaterials were prepared through the chemical oxidative polymerisation process. Ammonium peroxydisulfate (APS) was employed as oxidant. Scanning electron microscopy (SEM) results show the resultant polyaniline (PANi) materials exhibited nanofibrillar morphology with diameter sizes less than 300 nm. Using the nanofibrillar PANI, amperometric biosensors for H2O2 and erythromycin were constructed through the drop‐coating technique. Anthracene sulfonic acid (ASA) doped PANi and the test enzymes horseradish peroxidase, (HRP), or cytochrome P450 3A4, (CYP4503A4) were mixed in phosphate buffer solution before drop coating onto the electrode. The resultant biosensors displayed typical Michaelis‐Menten behaviour. The apparent Michaelis‐Menten constant obtained was 0.18 ± 0.01 mM and 0.80 ± 0.02 µM L−1 for the peroxide and erythromycin biosensor respectively. The sensitivity for the peroxide sensor was 3.3 × 10−3 A · cm−2 · mM−1, and the detection limit was found to be 1.2 × 10−2 mM respectively. Similarly, the sensitivity for the erythromycin sensor was in the same order at 1.57 × 10−3 A · cm−2 · mM−1 and detection limit was found to be 7.58 × 10−2 µM.</description><subject>Applied sciences</subject><subject>Biological and medical sciences</subject><subject>Biosensors</subject><subject>Biotechnology</subject><subject>doped polyaniline</subject><subject>Electrical measurements</subject><subject>electroactive</subject><subject>enzymes</subject><subject>Erythromycin</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Methods. Procedures. Technologies</subject><subject>nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Organic polymers</subject><subject>Peroxides</subject><subject>Physicochemistry of polymers</subject><subject>Polyanilines</subject><subject>Polymers with particular properties</subject><subject>Preparation, kinetics, thermodynamics, mechanism and catalysts</subject><subject>Resultants</subject><subject>synthesis</subject><subject>Various methods and equipments</subject><issn>1022-1360</issn><issn>1521-3900</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQhiMEEqVw5ZwLHweyjO3Ero_Lii5IZVmxIMTJmjgT1ZDYwU6B_HuySrXiVE4zh-d5R5o3y54yWDEA_rrHNK04gKpAg7qXnbGKs0JogPvzDpwXTEh4mD1K6TsAaK3YWeYOkx-vKbn0Kt9cY0Q7UnQJRxd8Htp8F35Rl-9DN6F3nfOU79CHHo8UdilH3-TrYeicXRTn83U_UAw9jdHZ_I0LiXwKMT3OHrSzQU9u53n25fLt58274urj9v1mfVXYUgtVVMS5Bk01MbRAVatbtHVTa4FCXNSyUYiy4QiNJNFoFJzIyrqV3PKSLInz7MWSO8Tw84bSaHqXLHUdego3yaiqrCQrlZjJ53eSYv4RKM1n8OWdIJOKlVyWTM7oakFtDClFas0QXY9xMgzMsSZzrMmcapqFZ7fZmCx2bURvXTpZM3hRcc1mTi_cb9fR9J9U82F9-PbvjWJxXRrpz8nF-MNIJVRlvu625rA5bLf7_SdzKf4CCim2GQ</recordid><startdate>200709</startdate><enddate>200709</enddate><creator>Michira, I.</creator><creator>Akinyeye, R.</creator><creator>Somerset, V.</creator><creator>Klink, M. J.</creator><creator>Sekota, M.</creator><creator>Al-Ahmed, A.</creator><creator>Baker, P. G. L.</creator><creator>Iwuoha, E.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>WILEY</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>7QO</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>200709</creationdate><title>Synthesis, Characterisation of Novel Polyaniline Nanomaterials and Application in Amperometric Biosensors</title><author>Michira, I. ; Akinyeye, R. ; Somerset, V. ; Klink, M. J. ; Sekota, M. ; Al-Ahmed, A. ; Baker, P. G. L. ; Iwuoha, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4937-5e22909ebe1ac0e5f9facbdb93a338b6d7aa6d2a0d6e3d9a32eec6bf62c24ece3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Biological and medical sciences</topic><topic>Biosensors</topic><topic>Biotechnology</topic><topic>doped polyaniline</topic><topic>Electrical measurements</topic><topic>electroactive</topic><topic>enzymes</topic><topic>Erythromycin</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Methods. Procedures. Technologies</topic><topic>nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Organic polymers</topic><topic>Peroxides</topic><topic>Physicochemistry of polymers</topic><topic>Polyanilines</topic><topic>Polymers with particular properties</topic><topic>Preparation, kinetics, thermodynamics, mechanism and catalysts</topic><topic>Resultants</topic><topic>synthesis</topic><topic>Various methods and equipments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Michira, I.</creatorcontrib><creatorcontrib>Akinyeye, R.</creatorcontrib><creatorcontrib>Somerset, V.</creatorcontrib><creatorcontrib>Klink, M. J.</creatorcontrib><creatorcontrib>Sekota, M.</creatorcontrib><creatorcontrib>Al-Ahmed, A.</creatorcontrib><creatorcontrib>Baker, P. G. L.</creatorcontrib><creatorcontrib>Iwuoha, E.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Biotechnology Research Abstracts</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Macromolecular symposia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Michira, I.</au><au>Akinyeye, R.</au><au>Somerset, V.</au><au>Klink, M. J.</au><au>Sekota, M.</au><au>Al-Ahmed, A.</au><au>Baker, P. G. L.</au><au>Iwuoha, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis, Characterisation of Novel Polyaniline Nanomaterials and Application in Amperometric Biosensors</atitle><jtitle>Macromolecular symposia</jtitle><addtitle>Macromol. Symp</addtitle><date>2007-09</date><risdate>2007</risdate><volume>255</volume><issue>1</issue><spage>57</spage><epage>69</epage><pages>57-69</pages><issn>1022-1360</issn><eissn>1521-3900</eissn><abstract>Anthracene sulfonic acid doped polyaniline nanomaterials were prepared through the chemical oxidative polymerisation process. Ammonium peroxydisulfate (APS) was employed as oxidant. Scanning electron microscopy (SEM) results show the resultant polyaniline (PANi) materials exhibited nanofibrillar morphology with diameter sizes less than 300 nm. Using the nanofibrillar PANI, amperometric biosensors for H2O2 and erythromycin were constructed through the drop‐coating technique. Anthracene sulfonic acid (ASA) doped PANi and the test enzymes horseradish peroxidase, (HRP), or cytochrome P450 3A4, (CYP4503A4) were mixed in phosphate buffer solution before drop coating onto the electrode. The resultant biosensors displayed typical Michaelis‐Menten behaviour. The apparent Michaelis‐Menten constant obtained was 0.18 ± 0.01 mM and 0.80 ± 0.02 µM L−1 for the peroxide and erythromycin biosensor respectively. The sensitivity for the peroxide sensor was 3.3 × 10−3 A · cm−2 · mM−1, and the detection limit was found to be 1.2 × 10−2 mM respectively. Similarly, the sensitivity for the erythromycin sensor was in the same order at 1.57 × 10−3 A · cm−2 · mM−1 and detection limit was found to be 7.58 × 10−2 µM.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/masy.200750907</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1022-1360 |
ispartof | Macromolecular symposia, 2007-09, Vol.255 (1), p.57-69 |
issn | 1022-1360 1521-3900 |
language | eng |
recordid | cdi_proquest_miscellaneous_754561473 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Applied sciences Biological and medical sciences Biosensors Biotechnology doped polyaniline Electrical measurements electroactive enzymes Erythromycin Exact sciences and technology Fundamental and applied biological sciences. Psychology Methods. Procedures. Technologies nanocomposites Nanomaterials Nanostructure Organic polymers Peroxides Physicochemistry of polymers Polyanilines Polymers with particular properties Preparation, kinetics, thermodynamics, mechanism and catalysts Resultants synthesis Various methods and equipments |
title | Synthesis, Characterisation of Novel Polyaniline Nanomaterials and Application in Amperometric Biosensors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T22%3A55%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis,%20Characterisation%20of%20Novel%20Polyaniline%20Nanomaterials%20and%20Application%20in%20Amperometric%20Biosensors&rft.jtitle=Macromolecular%20symposia&rft.au=Michira,%20I.&rft.date=2007-09&rft.volume=255&rft.issue=1&rft.spage=57&rft.epage=69&rft.pages=57-69&rft.issn=1022-1360&rft.eissn=1521-3900&rft_id=info:doi/10.1002/masy.200750907&rft_dat=%3Cproquest_cross%3E30990792%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671426416&rft_id=info:pmid/&rfr_iscdi=true |