A geometric framework for channel network extraction from lidar: Nonlinear diffusion and geodesic paths

A geometric framework for the automatic extraction of channels and channel networks from high‐resolution digital elevation data is introduced in this paper. The proposed approach incorporates nonlinear diffusion for the preprocessing of the data, both to remove noise and to enhance features that are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research. B. Solid Earth 2010-01, Vol.115 (F1), p.n/a
Hauptverfasser: Passalacqua, Paola, Do Trung, Tien, Foufoula-Georgiou, Efi, Sapiro, Guillermo, Dietrich, William E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue F1
container_start_page
container_title Journal of Geophysical Research. B. Solid Earth
container_volume 115
creator Passalacqua, Paola
Do Trung, Tien
Foufoula-Georgiou, Efi
Sapiro, Guillermo
Dietrich, William E.
description A geometric framework for the automatic extraction of channels and channel networks from high‐resolution digital elevation data is introduced in this paper. The proposed approach incorporates nonlinear diffusion for the preprocessing of the data, both to remove noise and to enhance features that are critical to the network extraction. Following this preprocessing, channels are defined as curves of minimal effort, or geodesics, where the effort is measured on the basis of fundamental geomorphological characteristics such as flow accumulation area and isoheight contours curvature. The merits of the proposed methodology, and especially the computational efficiency and accurate localization of the extracted channels, are demonstrated using light detection and ranging (lidar) data of the Skunk Creek, a tributary of the South Fork Eel River basin in northern California.
doi_str_mv 10.1029/2009JF001254
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_754559975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2315431971</sourcerecordid><originalsourceid>FETCH-LOGICAL-a6039-e6cccf16b55c7832497f3eda0aa375b751c512f29db7d85948fb42cab14b29013</originalsourceid><addsrcrecordid>eNqF0U1rFDEYB_BBFFxqb36AQfDl4OiT94m3srirZakgSnsLmUzSpp1J1mSWtt_ejFuKeFhzCWR-z59M_lX1EsEHBFh-xADydAWAMKNPqgVGjDcYA35aLQDRtgGMxfPqOOdrKIsyTgEtqsuT-tLG0U7Jm9olPdrbmG5qF1NtrnQIdqiDnf6c2bspaTP5GAqMYz34XqdP9VkMgw9Wp7r3zu3y_F2Hfo7tbS6pWz1d5RfVM6eHbI8f9qPq5-rzj-WXZvNt_XV5smk0ByIby40xDvGOMSNagqkUjtheg9ZEsE4wZBjCDsu-E33LJG1dR7HRHaIdloDIUfV2n7tN8dfO5kmNPhs7DDrYuMtKMMqYlIIV-eagJJxIwC36L8SIADBMCnx3ECLRctTSlstCX_1Dr-MuhfIyqhgEVLa0oPd7ZFLMOVmntsmPOt0rBGruXP3deeGvHzJ1NnooZQbj8-NMqZ8RLOf_QXt36wd7fzBTna6_rzia79vsZ3ye7N3jjE43iovSjDo_W6uLc36xWgpQG_Ib6lDHbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861104984</pqid></control><display><type>article</type><title>A geometric framework for channel network extraction from lidar: Nonlinear diffusion and geodesic paths</title><source>Access via Wiley Online Library</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Passalacqua, Paola ; Do Trung, Tien ; Foufoula-Georgiou, Efi ; Sapiro, Guillermo ; Dietrich, William E.</creator><creatorcontrib>Passalacqua, Paola ; Do Trung, Tien ; Foufoula-Georgiou, Efi ; Sapiro, Guillermo ; Dietrich, William E.</creatorcontrib><description>A geometric framework for the automatic extraction of channels and channel networks from high‐resolution digital elevation data is introduced in this paper. The proposed approach incorporates nonlinear diffusion for the preprocessing of the data, both to remove noise and to enhance features that are critical to the network extraction. Following this preprocessing, channels are defined as curves of minimal effort, or geodesics, where the effort is measured on the basis of fundamental geomorphological characteristics such as flow accumulation area and isoheight contours curvature. The merits of the proposed methodology, and especially the computational efficiency and accurate localization of the extracted channels, are demonstrated using light detection and ranging (lidar) data of the Skunk Creek, a tributary of the South Fork Eel River basin in northern California.</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-9003</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-9011</identifier><identifier>DOI: 10.1029/2009JF001254</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>anisotropic diffusion ; Channels ; Curvature ; Diffusion ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Extraction ; filtering ; Freshwater ; Geomorphology ; high-resolution topography ; Hydrology ; Lidar ; Networks ; Nonlinearity ; Preprocessing ; River basins</subject><ispartof>Journal of Geophysical Research. B. Solid Earth, 2010-01, Vol.115 (F1), p.n/a</ispartof><rights>Copyright 2010 by the American Geophysical Union.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright 2010 by American Geophysical Union</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a6039-e6cccf16b55c7832497f3eda0aa375b751c512f29db7d85948fb42cab14b29013</citedby><cites>FETCH-LOGICAL-a6039-e6cccf16b55c7832497f3eda0aa375b751c512f29db7d85948fb42cab14b29013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2009JF001254$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2009JF001254$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,11514,27924,27925,45574,45575,46409,46468,46833,46892</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22753291$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Passalacqua, Paola</creatorcontrib><creatorcontrib>Do Trung, Tien</creatorcontrib><creatorcontrib>Foufoula-Georgiou, Efi</creatorcontrib><creatorcontrib>Sapiro, Guillermo</creatorcontrib><creatorcontrib>Dietrich, William E.</creatorcontrib><title>A geometric framework for channel network extraction from lidar: Nonlinear diffusion and geodesic paths</title><title>Journal of Geophysical Research. B. Solid Earth</title><addtitle>J. Geophys. Res</addtitle><description>A geometric framework for the automatic extraction of channels and channel networks from high‐resolution digital elevation data is introduced in this paper. The proposed approach incorporates nonlinear diffusion for the preprocessing of the data, both to remove noise and to enhance features that are critical to the network extraction. Following this preprocessing, channels are defined as curves of minimal effort, or geodesics, where the effort is measured on the basis of fundamental geomorphological characteristics such as flow accumulation area and isoheight contours curvature. The merits of the proposed methodology, and especially the computational efficiency and accurate localization of the extracted channels, are demonstrated using light detection and ranging (lidar) data of the Skunk Creek, a tributary of the South Fork Eel River basin in northern California.</description><subject>anisotropic diffusion</subject><subject>Channels</subject><subject>Curvature</subject><subject>Diffusion</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Extraction</subject><subject>filtering</subject><subject>Freshwater</subject><subject>Geomorphology</subject><subject>high-resolution topography</subject><subject>Hydrology</subject><subject>Lidar</subject><subject>Networks</subject><subject>Nonlinearity</subject><subject>Preprocessing</subject><subject>River basins</subject><issn>0148-0227</issn><issn>2169-9003</issn><issn>2156-2202</issn><issn>2169-9011</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0U1rFDEYB_BBFFxqb36AQfDl4OiT94m3srirZakgSnsLmUzSpp1J1mSWtt_ejFuKeFhzCWR-z59M_lX1EsEHBFh-xADydAWAMKNPqgVGjDcYA35aLQDRtgGMxfPqOOdrKIsyTgEtqsuT-tLG0U7Jm9olPdrbmG5qF1NtrnQIdqiDnf6c2bspaTP5GAqMYz34XqdP9VkMgw9Wp7r3zu3y_F2Hfo7tbS6pWz1d5RfVM6eHbI8f9qPq5-rzj-WXZvNt_XV5smk0ByIby40xDvGOMSNagqkUjtheg9ZEsE4wZBjCDsu-E33LJG1dR7HRHaIdloDIUfV2n7tN8dfO5kmNPhs7DDrYuMtKMMqYlIIV-eagJJxIwC36L8SIADBMCnx3ECLRctTSlstCX_1Dr-MuhfIyqhgEVLa0oPd7ZFLMOVmntsmPOt0rBGruXP3deeGvHzJ1NnooZQbj8-NMqZ8RLOf_QXt36wd7fzBTna6_rzia79vsZ3ye7N3jjE43iovSjDo_W6uLc36xWgpQG_Ib6lDHbA</recordid><startdate>20100107</startdate><enddate>20100107</enddate><creator>Passalacqua, Paola</creator><creator>Do Trung, Tien</creator><creator>Foufoula-Georgiou, Efi</creator><creator>Sapiro, Guillermo</creator><creator>Dietrich, William E.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>7SM</scope></search><sort><creationdate>20100107</creationdate><title>A geometric framework for channel network extraction from lidar: Nonlinear diffusion and geodesic paths</title><author>Passalacqua, Paola ; Do Trung, Tien ; Foufoula-Georgiou, Efi ; Sapiro, Guillermo ; Dietrich, William E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a6039-e6cccf16b55c7832497f3eda0aa375b751c512f29db7d85948fb42cab14b29013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>anisotropic diffusion</topic><topic>Channels</topic><topic>Curvature</topic><topic>Diffusion</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Extraction</topic><topic>filtering</topic><topic>Freshwater</topic><topic>Geomorphology</topic><topic>high-resolution topography</topic><topic>Hydrology</topic><topic>Lidar</topic><topic>Networks</topic><topic>Nonlinearity</topic><topic>Preprocessing</topic><topic>River basins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Passalacqua, Paola</creatorcontrib><creatorcontrib>Do Trung, Tien</creatorcontrib><creatorcontrib>Foufoula-Georgiou, Efi</creatorcontrib><creatorcontrib>Sapiro, Guillermo</creatorcontrib><creatorcontrib>Dietrich, William E.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Earthquake Engineering Abstracts</collection><jtitle>Journal of Geophysical Research. B. Solid Earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Passalacqua, Paola</au><au>Do Trung, Tien</au><au>Foufoula-Georgiou, Efi</au><au>Sapiro, Guillermo</au><au>Dietrich, William E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A geometric framework for channel network extraction from lidar: Nonlinear diffusion and geodesic paths</atitle><jtitle>Journal of Geophysical Research. B. Solid Earth</jtitle><addtitle>J. Geophys. Res</addtitle><date>2010-01-07</date><risdate>2010</risdate><volume>115</volume><issue>F1</issue><epage>n/a</epage><issn>0148-0227</issn><issn>2169-9003</issn><eissn>2156-2202</eissn><eissn>2169-9011</eissn><abstract>A geometric framework for the automatic extraction of channels and channel networks from high‐resolution digital elevation data is introduced in this paper. The proposed approach incorporates nonlinear diffusion for the preprocessing of the data, both to remove noise and to enhance features that are critical to the network extraction. Following this preprocessing, channels are defined as curves of minimal effort, or geodesics, where the effort is measured on the basis of fundamental geomorphological characteristics such as flow accumulation area and isoheight contours curvature. The merits of the proposed methodology, and especially the computational efficiency and accurate localization of the extracted channels, are demonstrated using light detection and ranging (lidar) data of the Skunk Creek, a tributary of the South Fork Eel River basin in northern California.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2009JF001254</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research. B. Solid Earth, 2010-01, Vol.115 (F1), p.n/a
issn 0148-0227
2169-9003
2156-2202
2169-9011
language eng
recordid cdi_proquest_miscellaneous_754559975
source Access via Wiley Online Library; Wiley-Blackwell AGU Digital Library; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection
subjects anisotropic diffusion
Channels
Curvature
Diffusion
Earth sciences
Earth, ocean, space
Exact sciences and technology
Extraction
filtering
Freshwater
Geomorphology
high-resolution topography
Hydrology
Lidar
Networks
Nonlinearity
Preprocessing
River basins
title A geometric framework for channel network extraction from lidar: Nonlinear diffusion and geodesic paths
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T22%3A22%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20geometric%20framework%20for%20channel%20network%20extraction%20from%20lidar:%20Nonlinear%20diffusion%20and%20geodesic%20paths&rft.jtitle=Journal%20of%20Geophysical%20Research.%20B.%20Solid%20Earth&rft.au=Passalacqua,%20Paola&rft.date=2010-01-07&rft.volume=115&rft.issue=F1&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2009JF001254&rft_dat=%3Cproquest_cross%3E2315431971%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=861104984&rft_id=info:pmid/&rfr_iscdi=true