A geometric framework for channel network extraction from lidar: Nonlinear diffusion and geodesic paths
A geometric framework for the automatic extraction of channels and channel networks from high‐resolution digital elevation data is introduced in this paper. The proposed approach incorporates nonlinear diffusion for the preprocessing of the data, both to remove noise and to enhance features that are...
Gespeichert in:
Veröffentlicht in: | Journal of Geophysical Research. B. Solid Earth 2010-01, Vol.115 (F1), p.n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | F1 |
container_start_page | |
container_title | Journal of Geophysical Research. B. Solid Earth |
container_volume | 115 |
creator | Passalacqua, Paola Do Trung, Tien Foufoula-Georgiou, Efi Sapiro, Guillermo Dietrich, William E. |
description | A geometric framework for the automatic extraction of channels and channel networks from high‐resolution digital elevation data is introduced in this paper. The proposed approach incorporates nonlinear diffusion for the preprocessing of the data, both to remove noise and to enhance features that are critical to the network extraction. Following this preprocessing, channels are defined as curves of minimal effort, or geodesics, where the effort is measured on the basis of fundamental geomorphological characteristics such as flow accumulation area and isoheight contours curvature. The merits of the proposed methodology, and especially the computational efficiency and accurate localization of the extracted channels, are demonstrated using light detection and ranging (lidar) data of the Skunk Creek, a tributary of the South Fork Eel River basin in northern California. |
doi_str_mv | 10.1029/2009JF001254 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_754559975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2315431971</sourcerecordid><originalsourceid>FETCH-LOGICAL-a6039-e6cccf16b55c7832497f3eda0aa375b751c512f29db7d85948fb42cab14b29013</originalsourceid><addsrcrecordid>eNqF0U1rFDEYB_BBFFxqb36AQfDl4OiT94m3srirZakgSnsLmUzSpp1J1mSWtt_ejFuKeFhzCWR-z59M_lX1EsEHBFh-xADydAWAMKNPqgVGjDcYA35aLQDRtgGMxfPqOOdrKIsyTgEtqsuT-tLG0U7Jm9olPdrbmG5qF1NtrnQIdqiDnf6c2bspaTP5GAqMYz34XqdP9VkMgw9Wp7r3zu3y_F2Hfo7tbS6pWz1d5RfVM6eHbI8f9qPq5-rzj-WXZvNt_XV5smk0ByIby40xDvGOMSNagqkUjtheg9ZEsE4wZBjCDsu-E33LJG1dR7HRHaIdloDIUfV2n7tN8dfO5kmNPhs7DDrYuMtKMMqYlIIV-eagJJxIwC36L8SIADBMCnx3ECLRctTSlstCX_1Dr-MuhfIyqhgEVLa0oPd7ZFLMOVmntsmPOt0rBGruXP3deeGvHzJ1NnooZQbj8-NMqZ8RLOf_QXt36wd7fzBTna6_rzia79vsZ3ye7N3jjE43iovSjDo_W6uLc36xWgpQG_Ib6lDHbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861104984</pqid></control><display><type>article</type><title>A geometric framework for channel network extraction from lidar: Nonlinear diffusion and geodesic paths</title><source>Access via Wiley Online Library</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Passalacqua, Paola ; Do Trung, Tien ; Foufoula-Georgiou, Efi ; Sapiro, Guillermo ; Dietrich, William E.</creator><creatorcontrib>Passalacqua, Paola ; Do Trung, Tien ; Foufoula-Georgiou, Efi ; Sapiro, Guillermo ; Dietrich, William E.</creatorcontrib><description>A geometric framework for the automatic extraction of channels and channel networks from high‐resolution digital elevation data is introduced in this paper. The proposed approach incorporates nonlinear diffusion for the preprocessing of the data, both to remove noise and to enhance features that are critical to the network extraction. Following this preprocessing, channels are defined as curves of minimal effort, or geodesics, where the effort is measured on the basis of fundamental geomorphological characteristics such as flow accumulation area and isoheight contours curvature. The merits of the proposed methodology, and especially the computational efficiency and accurate localization of the extracted channels, are demonstrated using light detection and ranging (lidar) data of the Skunk Creek, a tributary of the South Fork Eel River basin in northern California.</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-9003</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-9011</identifier><identifier>DOI: 10.1029/2009JF001254</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>anisotropic diffusion ; Channels ; Curvature ; Diffusion ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Extraction ; filtering ; Freshwater ; Geomorphology ; high-resolution topography ; Hydrology ; Lidar ; Networks ; Nonlinearity ; Preprocessing ; River basins</subject><ispartof>Journal of Geophysical Research. B. Solid Earth, 2010-01, Vol.115 (F1), p.n/a</ispartof><rights>Copyright 2010 by the American Geophysical Union.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright 2010 by American Geophysical Union</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a6039-e6cccf16b55c7832497f3eda0aa375b751c512f29db7d85948fb42cab14b29013</citedby><cites>FETCH-LOGICAL-a6039-e6cccf16b55c7832497f3eda0aa375b751c512f29db7d85948fb42cab14b29013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2009JF001254$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2009JF001254$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,11514,27924,27925,45574,45575,46409,46468,46833,46892</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22753291$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Passalacqua, Paola</creatorcontrib><creatorcontrib>Do Trung, Tien</creatorcontrib><creatorcontrib>Foufoula-Georgiou, Efi</creatorcontrib><creatorcontrib>Sapiro, Guillermo</creatorcontrib><creatorcontrib>Dietrich, William E.</creatorcontrib><title>A geometric framework for channel network extraction from lidar: Nonlinear diffusion and geodesic paths</title><title>Journal of Geophysical Research. B. Solid Earth</title><addtitle>J. Geophys. Res</addtitle><description>A geometric framework for the automatic extraction of channels and channel networks from high‐resolution digital elevation data is introduced in this paper. The proposed approach incorporates nonlinear diffusion for the preprocessing of the data, both to remove noise and to enhance features that are critical to the network extraction. Following this preprocessing, channels are defined as curves of minimal effort, or geodesics, where the effort is measured on the basis of fundamental geomorphological characteristics such as flow accumulation area and isoheight contours curvature. The merits of the proposed methodology, and especially the computational efficiency and accurate localization of the extracted channels, are demonstrated using light detection and ranging (lidar) data of the Skunk Creek, a tributary of the South Fork Eel River basin in northern California.</description><subject>anisotropic diffusion</subject><subject>Channels</subject><subject>Curvature</subject><subject>Diffusion</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Extraction</subject><subject>filtering</subject><subject>Freshwater</subject><subject>Geomorphology</subject><subject>high-resolution topography</subject><subject>Hydrology</subject><subject>Lidar</subject><subject>Networks</subject><subject>Nonlinearity</subject><subject>Preprocessing</subject><subject>River basins</subject><issn>0148-0227</issn><issn>2169-9003</issn><issn>2156-2202</issn><issn>2169-9011</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0U1rFDEYB_BBFFxqb36AQfDl4OiT94m3srirZakgSnsLmUzSpp1J1mSWtt_ejFuKeFhzCWR-z59M_lX1EsEHBFh-xADydAWAMKNPqgVGjDcYA35aLQDRtgGMxfPqOOdrKIsyTgEtqsuT-tLG0U7Jm9olPdrbmG5qF1NtrnQIdqiDnf6c2bspaTP5GAqMYz34XqdP9VkMgw9Wp7r3zu3y_F2Hfo7tbS6pWz1d5RfVM6eHbI8f9qPq5-rzj-WXZvNt_XV5smk0ByIby40xDvGOMSNagqkUjtheg9ZEsE4wZBjCDsu-E33LJG1dR7HRHaIdloDIUfV2n7tN8dfO5kmNPhs7DDrYuMtKMMqYlIIV-eagJJxIwC36L8SIADBMCnx3ECLRctTSlstCX_1Dr-MuhfIyqhgEVLa0oPd7ZFLMOVmntsmPOt0rBGruXP3deeGvHzJ1NnooZQbj8-NMqZ8RLOf_QXt36wd7fzBTna6_rzia79vsZ3ye7N3jjE43iovSjDo_W6uLc36xWgpQG_Ib6lDHbA</recordid><startdate>20100107</startdate><enddate>20100107</enddate><creator>Passalacqua, Paola</creator><creator>Do Trung, Tien</creator><creator>Foufoula-Georgiou, Efi</creator><creator>Sapiro, Guillermo</creator><creator>Dietrich, William E.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>7SM</scope></search><sort><creationdate>20100107</creationdate><title>A geometric framework for channel network extraction from lidar: Nonlinear diffusion and geodesic paths</title><author>Passalacqua, Paola ; Do Trung, Tien ; Foufoula-Georgiou, Efi ; Sapiro, Guillermo ; Dietrich, William E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a6039-e6cccf16b55c7832497f3eda0aa375b751c512f29db7d85948fb42cab14b29013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>anisotropic diffusion</topic><topic>Channels</topic><topic>Curvature</topic><topic>Diffusion</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Extraction</topic><topic>filtering</topic><topic>Freshwater</topic><topic>Geomorphology</topic><topic>high-resolution topography</topic><topic>Hydrology</topic><topic>Lidar</topic><topic>Networks</topic><topic>Nonlinearity</topic><topic>Preprocessing</topic><topic>River basins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Passalacqua, Paola</creatorcontrib><creatorcontrib>Do Trung, Tien</creatorcontrib><creatorcontrib>Foufoula-Georgiou, Efi</creatorcontrib><creatorcontrib>Sapiro, Guillermo</creatorcontrib><creatorcontrib>Dietrich, William E.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Earthquake Engineering Abstracts</collection><jtitle>Journal of Geophysical Research. B. Solid Earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Passalacqua, Paola</au><au>Do Trung, Tien</au><au>Foufoula-Georgiou, Efi</au><au>Sapiro, Guillermo</au><au>Dietrich, William E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A geometric framework for channel network extraction from lidar: Nonlinear diffusion and geodesic paths</atitle><jtitle>Journal of Geophysical Research. B. Solid Earth</jtitle><addtitle>J. Geophys. Res</addtitle><date>2010-01-07</date><risdate>2010</risdate><volume>115</volume><issue>F1</issue><epage>n/a</epage><issn>0148-0227</issn><issn>2169-9003</issn><eissn>2156-2202</eissn><eissn>2169-9011</eissn><abstract>A geometric framework for the automatic extraction of channels and channel networks from high‐resolution digital elevation data is introduced in this paper. The proposed approach incorporates nonlinear diffusion for the preprocessing of the data, both to remove noise and to enhance features that are critical to the network extraction. Following this preprocessing, channels are defined as curves of minimal effort, or geodesics, where the effort is measured on the basis of fundamental geomorphological characteristics such as flow accumulation area and isoheight contours curvature. The merits of the proposed methodology, and especially the computational efficiency and accurate localization of the extracted channels, are demonstrated using light detection and ranging (lidar) data of the Skunk Creek, a tributary of the South Fork Eel River basin in northern California.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2009JF001254</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0148-0227 |
ispartof | Journal of Geophysical Research. B. Solid Earth, 2010-01, Vol.115 (F1), p.n/a |
issn | 0148-0227 2169-9003 2156-2202 2169-9011 |
language | eng |
recordid | cdi_proquest_miscellaneous_754559975 |
source | Access via Wiley Online Library; Wiley-Blackwell AGU Digital Library; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection |
subjects | anisotropic diffusion Channels Curvature Diffusion Earth sciences Earth, ocean, space Exact sciences and technology Extraction filtering Freshwater Geomorphology high-resolution topography Hydrology Lidar Networks Nonlinearity Preprocessing River basins |
title | A geometric framework for channel network extraction from lidar: Nonlinear diffusion and geodesic paths |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T22%3A22%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20geometric%20framework%20for%20channel%20network%20extraction%20from%20lidar:%20Nonlinear%20diffusion%20and%20geodesic%20paths&rft.jtitle=Journal%20of%20Geophysical%20Research.%20B.%20Solid%20Earth&rft.au=Passalacqua,%20Paola&rft.date=2010-01-07&rft.volume=115&rft.issue=F1&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2009JF001254&rft_dat=%3Cproquest_cross%3E2315431971%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=861104984&rft_id=info:pmid/&rfr_iscdi=true |