Viral strategies for studying the brain, including a replication-restricted self-amplifying delta-G vesicular stomatis virus that rapidly expresses transgenes in brain and can generate a multicolor golgi-like expression

Viruses have substantial value as vehicles for transporting transgenes into neurons. Each virus has its own set of attributes for addressing neuroscience‐related questions. Here we review some of the advantages and limitations of herpes, pseudorabies, rabies, adeno‐associated, lentivirus, and others...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of comparative neurology (1911) 2009-10, Vol.516 (6), p.456-481
Hauptverfasser: van den Pol, Anthony N., Ozduman, Koray, Wollmann, Guido, Ho, Winson S.C., Simon, Ian, Yao, Yang, Rose, John K., Ghosh, Prabhat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 481
container_issue 6
container_start_page 456
container_title Journal of comparative neurology (1911)
container_volume 516
creator van den Pol, Anthony N.
Ozduman, Koray
Wollmann, Guido
Ho, Winson S.C.
Simon, Ian
Yao, Yang
Rose, John K.
Ghosh, Prabhat
description Viruses have substantial value as vehicles for transporting transgenes into neurons. Each virus has its own set of attributes for addressing neuroscience‐related questions. Here we review some of the advantages and limitations of herpes, pseudorabies, rabies, adeno‐associated, lentivirus, and others to study the brain. We then explore a novel recombinant vesicular stomatitis virus (dG‐VSV) with the G‐gene deleted and transgenes engineered into the first position of the RNA genome, which replicates only in the first brain cell infected, as corroborated with ultrastructural analysis, eliminating spread of virus. Because of its ability to replicate rapidly and to express multiple mRNA copies and additional templates for more copies, reporter gene expression is amplified substantially, over 500‐fold in 6 hours, allowing detailed imaging of dendrites, dendritic spines, axons, and axon terminal fields within a few hours to a few days after inoculation. Green fluorescent protein (GFP) expression is first detected within 1 hour of inoculation. The virus generates a Golgi‐like appearance in all neurons or glia of regions of the brain tested. Whole‐cell patch‐clamp electrophysiology, calcium digital imaging with fura‐2, and time‐lapse digital imaging showed that neurons appeared physiologically normal after expressing viral transgenes. The virus has a wide range of species applicability, including mouse, rat, hamster, human, and Drosophila cells. By using dG‐VSV, we show efferent projections from the suprachiasmatic nucleus terminating in the periventricular region immediately dorsal to the nucleus. DG‐VSVs with genes coding for different color reporters allow multicolor visualization of neurons wherever applied. J. Comp. Neurol. 516:456–481, 2009. © 2009 Wiley‐Liss, Inc.
doi_str_mv 10.1002/cne.22131
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_754550807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67594887</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4281-b93db3628c7a5529264b2e4728d6a82a3297338da880d9fbde00bc98a9d080713</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhSMEokNhwQsgr0BIpLWdP3sJo3ZAlIJQgaV1Y98Mpo4z2EnbeVZeBqczhRWsbF9_5_jIJ8ueMnrEKOXH2uMR56xg97IFo7LOpajZ_WyR7lguZd0cZI9i_EEplbIQD7MDlmZcCr7Ifn21ARyJY4AR1xYj6YaQjpPZWr8m43ckbQDrXxHrtZvMPAQScOOshtEOPg-YxFaPaEhE1-XQp7vuVm3QjZCvyBVGqycHs_HQJ1kkVzZMMdnDSAJsrHFbgjeb5BVThBTGxzX6tLV-9z4Bb4gGT-bxnDWl6Cc3Wj24FHg9uLXNnb3EO5sU7XH2oAMX8cl-Pcy-nJ5cLN_mZx9X75avz3JdcsHyVhamLWoudANVxSWvy5Zj2XBhahAcCi6bohAGhKBGdq1BSlstBUhDBW1YcZi92PluwvBzSt-hehs1OgcehymqpiqrakYT-fy_ZN1UshRiBl_uQB2GGAN2ahNsD2GrGFVz5yp1rm47T-yzvenU9mj-kvuSE3C8A66tw-2_ndTy_OTOMt8pbBzx5o8CwmWKWDSV-na-Uu_5xafPJfug3hS_ASxdywQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67594887</pqid></control><display><type>article</type><title>Viral strategies for studying the brain, including a replication-restricted self-amplifying delta-G vesicular stomatis virus that rapidly expresses transgenes in brain and can generate a multicolor golgi-like expression</title><source>Wiley-Blackwell Journals</source><source>MEDLINE</source><creator>van den Pol, Anthony N. ; Ozduman, Koray ; Wollmann, Guido ; Ho, Winson S.C. ; Simon, Ian ; Yao, Yang ; Rose, John K. ; Ghosh, Prabhat</creator><creatorcontrib>van den Pol, Anthony N. ; Ozduman, Koray ; Wollmann, Guido ; Ho, Winson S.C. ; Simon, Ian ; Yao, Yang ; Rose, John K. ; Ghosh, Prabhat</creatorcontrib><description>Viruses have substantial value as vehicles for transporting transgenes into neurons. Each virus has its own set of attributes for addressing neuroscience‐related questions. Here we review some of the advantages and limitations of herpes, pseudorabies, rabies, adeno‐associated, lentivirus, and others to study the brain. We then explore a novel recombinant vesicular stomatitis virus (dG‐VSV) with the G‐gene deleted and transgenes engineered into the first position of the RNA genome, which replicates only in the first brain cell infected, as corroborated with ultrastructural analysis, eliminating spread of virus. Because of its ability to replicate rapidly and to express multiple mRNA copies and additional templates for more copies, reporter gene expression is amplified substantially, over 500‐fold in 6 hours, allowing detailed imaging of dendrites, dendritic spines, axons, and axon terminal fields within a few hours to a few days after inoculation. Green fluorescent protein (GFP) expression is first detected within 1 hour of inoculation. The virus generates a Golgi‐like appearance in all neurons or glia of regions of the brain tested. Whole‐cell patch‐clamp electrophysiology, calcium digital imaging with fura‐2, and time‐lapse digital imaging showed that neurons appeared physiologically normal after expressing viral transgenes. The virus has a wide range of species applicability, including mouse, rat, hamster, human, and Drosophila cells. By using dG‐VSV, we show efferent projections from the suprachiasmatic nucleus terminating in the periventricular region immediately dorsal to the nucleus. DG‐VSVs with genes coding for different color reporters allow multicolor visualization of neurons wherever applied. J. Comp. Neurol. 516:456–481, 2009. © 2009 Wiley‐Liss, Inc.</description><identifier>ISSN: 0021-9967</identifier><identifier>EISSN: 1096-9861</identifier><identifier>DOI: 10.1002/cne.22131</identifier><identifier>PMID: 19672982</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Animals ; Brain - physiology ; Brain - ultrastructure ; Brain - virology ; Cells, Cultured ; Drosophila ; Gene Transfer Techniques ; Genes, Reporter ; Genetic Vectors ; Humans ; Lentivirus ; Membrane Glycoproteins - genetics ; Mice ; neuroanatomy ; Neuroglia - ultrastructure ; Neuroglia - virology ; Neurons - physiology ; Neurons - ultrastructure ; Neurons - virology ; neurophysiology ; rapid gene expression ; reporter gene ; RNA, Messenger - metabolism ; RNA, Viral - genetics ; Transgenes ; Vesicular stomatitis virus ; Vesiculovirus - genetics ; Vesiculovirus - physiology ; Viral Envelope Proteins - genetics ; virus ; Virus Replication ; Viruses - genetics</subject><ispartof>Journal of comparative neurology (1911), 2009-10, Vol.516 (6), p.456-481</ispartof><rights>Copyright © 2009 Wiley‐Liss, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4281-b93db3628c7a5529264b2e4728d6a82a3297338da880d9fbde00bc98a9d080713</citedby><cites>FETCH-LOGICAL-c4281-b93db3628c7a5529264b2e4728d6a82a3297338da880d9fbde00bc98a9d080713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcne.22131$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcne.22131$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19672982$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>van den Pol, Anthony N.</creatorcontrib><creatorcontrib>Ozduman, Koray</creatorcontrib><creatorcontrib>Wollmann, Guido</creatorcontrib><creatorcontrib>Ho, Winson S.C.</creatorcontrib><creatorcontrib>Simon, Ian</creatorcontrib><creatorcontrib>Yao, Yang</creatorcontrib><creatorcontrib>Rose, John K.</creatorcontrib><creatorcontrib>Ghosh, Prabhat</creatorcontrib><title>Viral strategies for studying the brain, including a replication-restricted self-amplifying delta-G vesicular stomatis virus that rapidly expresses transgenes in brain and can generate a multicolor golgi-like expression</title><title>Journal of comparative neurology (1911)</title><addtitle>J. Comp. Neurol</addtitle><description>Viruses have substantial value as vehicles for transporting transgenes into neurons. Each virus has its own set of attributes for addressing neuroscience‐related questions. Here we review some of the advantages and limitations of herpes, pseudorabies, rabies, adeno‐associated, lentivirus, and others to study the brain. We then explore a novel recombinant vesicular stomatitis virus (dG‐VSV) with the G‐gene deleted and transgenes engineered into the first position of the RNA genome, which replicates only in the first brain cell infected, as corroborated with ultrastructural analysis, eliminating spread of virus. Because of its ability to replicate rapidly and to express multiple mRNA copies and additional templates for more copies, reporter gene expression is amplified substantially, over 500‐fold in 6 hours, allowing detailed imaging of dendrites, dendritic spines, axons, and axon terminal fields within a few hours to a few days after inoculation. Green fluorescent protein (GFP) expression is first detected within 1 hour of inoculation. The virus generates a Golgi‐like appearance in all neurons or glia of regions of the brain tested. Whole‐cell patch‐clamp electrophysiology, calcium digital imaging with fura‐2, and time‐lapse digital imaging showed that neurons appeared physiologically normal after expressing viral transgenes. The virus has a wide range of species applicability, including mouse, rat, hamster, human, and Drosophila cells. By using dG‐VSV, we show efferent projections from the suprachiasmatic nucleus terminating in the periventricular region immediately dorsal to the nucleus. DG‐VSVs with genes coding for different color reporters allow multicolor visualization of neurons wherever applied. J. Comp. Neurol. 516:456–481, 2009. © 2009 Wiley‐Liss, Inc.</description><subject>Animals</subject><subject>Brain - physiology</subject><subject>Brain - ultrastructure</subject><subject>Brain - virology</subject><subject>Cells, Cultured</subject><subject>Drosophila</subject><subject>Gene Transfer Techniques</subject><subject>Genes, Reporter</subject><subject>Genetic Vectors</subject><subject>Humans</subject><subject>Lentivirus</subject><subject>Membrane Glycoproteins - genetics</subject><subject>Mice</subject><subject>neuroanatomy</subject><subject>Neuroglia - ultrastructure</subject><subject>Neuroglia - virology</subject><subject>Neurons - physiology</subject><subject>Neurons - ultrastructure</subject><subject>Neurons - virology</subject><subject>neurophysiology</subject><subject>rapid gene expression</subject><subject>reporter gene</subject><subject>RNA, Messenger - metabolism</subject><subject>RNA, Viral - genetics</subject><subject>Transgenes</subject><subject>Vesicular stomatitis virus</subject><subject>Vesiculovirus - genetics</subject><subject>Vesiculovirus - physiology</subject><subject>Viral Envelope Proteins - genetics</subject><subject>virus</subject><subject>Virus Replication</subject><subject>Viruses - genetics</subject><issn>0021-9967</issn><issn>1096-9861</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1u1DAUhSMEokNhwQsgr0BIpLWdP3sJo3ZAlIJQgaV1Y98Mpo4z2EnbeVZeBqczhRWsbF9_5_jIJ8ueMnrEKOXH2uMR56xg97IFo7LOpajZ_WyR7lguZd0cZI9i_EEplbIQD7MDlmZcCr7Ifn21ARyJY4AR1xYj6YaQjpPZWr8m43ckbQDrXxHrtZvMPAQScOOshtEOPg-YxFaPaEhE1-XQp7vuVm3QjZCvyBVGqycHs_HQJ1kkVzZMMdnDSAJsrHFbgjeb5BVThBTGxzX6tLV-9z4Bb4gGT-bxnDWl6Cc3Wj24FHg9uLXNnb3EO5sU7XH2oAMX8cl-Pcy-nJ5cLN_mZx9X75avz3JdcsHyVhamLWoudANVxSWvy5Zj2XBhahAcCi6bohAGhKBGdq1BSlstBUhDBW1YcZi92PluwvBzSt-hehs1OgcehymqpiqrakYT-fy_ZN1UshRiBl_uQB2GGAN2ahNsD2GrGFVz5yp1rm47T-yzvenU9mj-kvuSE3C8A66tw-2_ndTy_OTOMt8pbBzx5o8CwmWKWDSV-na-Uu_5xafPJfug3hS_ASxdywQ</recordid><startdate>20091020</startdate><enddate>20091020</enddate><creator>van den Pol, Anthony N.</creator><creator>Ozduman, Koray</creator><creator>Wollmann, Guido</creator><creator>Ho, Winson S.C.</creator><creator>Simon, Ian</creator><creator>Yao, Yang</creator><creator>Rose, John K.</creator><creator>Ghosh, Prabhat</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope></search><sort><creationdate>20091020</creationdate><title>Viral strategies for studying the brain, including a replication-restricted self-amplifying delta-G vesicular stomatis virus that rapidly expresses transgenes in brain and can generate a multicolor golgi-like expression</title><author>van den Pol, Anthony N. ; Ozduman, Koray ; Wollmann, Guido ; Ho, Winson S.C. ; Simon, Ian ; Yao, Yang ; Rose, John K. ; Ghosh, Prabhat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4281-b93db3628c7a5529264b2e4728d6a82a3297338da880d9fbde00bc98a9d080713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Brain - physiology</topic><topic>Brain - ultrastructure</topic><topic>Brain - virology</topic><topic>Cells, Cultured</topic><topic>Drosophila</topic><topic>Gene Transfer Techniques</topic><topic>Genes, Reporter</topic><topic>Genetic Vectors</topic><topic>Humans</topic><topic>Lentivirus</topic><topic>Membrane Glycoproteins - genetics</topic><topic>Mice</topic><topic>neuroanatomy</topic><topic>Neuroglia - ultrastructure</topic><topic>Neuroglia - virology</topic><topic>Neurons - physiology</topic><topic>Neurons - ultrastructure</topic><topic>Neurons - virology</topic><topic>neurophysiology</topic><topic>rapid gene expression</topic><topic>reporter gene</topic><topic>RNA, Messenger - metabolism</topic><topic>RNA, Viral - genetics</topic><topic>Transgenes</topic><topic>Vesicular stomatitis virus</topic><topic>Vesiculovirus - genetics</topic><topic>Vesiculovirus - physiology</topic><topic>Viral Envelope Proteins - genetics</topic><topic>virus</topic><topic>Virus Replication</topic><topic>Viruses - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van den Pol, Anthony N.</creatorcontrib><creatorcontrib>Ozduman, Koray</creatorcontrib><creatorcontrib>Wollmann, Guido</creatorcontrib><creatorcontrib>Ho, Winson S.C.</creatorcontrib><creatorcontrib>Simon, Ian</creatorcontrib><creatorcontrib>Yao, Yang</creatorcontrib><creatorcontrib>Rose, John K.</creatorcontrib><creatorcontrib>Ghosh, Prabhat</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of comparative neurology (1911)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van den Pol, Anthony N.</au><au>Ozduman, Koray</au><au>Wollmann, Guido</au><au>Ho, Winson S.C.</au><au>Simon, Ian</au><au>Yao, Yang</au><au>Rose, John K.</au><au>Ghosh, Prabhat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Viral strategies for studying the brain, including a replication-restricted self-amplifying delta-G vesicular stomatis virus that rapidly expresses transgenes in brain and can generate a multicolor golgi-like expression</atitle><jtitle>Journal of comparative neurology (1911)</jtitle><addtitle>J. Comp. Neurol</addtitle><date>2009-10-20</date><risdate>2009</risdate><volume>516</volume><issue>6</issue><spage>456</spage><epage>481</epage><pages>456-481</pages><issn>0021-9967</issn><eissn>1096-9861</eissn><abstract>Viruses have substantial value as vehicles for transporting transgenes into neurons. Each virus has its own set of attributes for addressing neuroscience‐related questions. Here we review some of the advantages and limitations of herpes, pseudorabies, rabies, adeno‐associated, lentivirus, and others to study the brain. We then explore a novel recombinant vesicular stomatitis virus (dG‐VSV) with the G‐gene deleted and transgenes engineered into the first position of the RNA genome, which replicates only in the first brain cell infected, as corroborated with ultrastructural analysis, eliminating spread of virus. Because of its ability to replicate rapidly and to express multiple mRNA copies and additional templates for more copies, reporter gene expression is amplified substantially, over 500‐fold in 6 hours, allowing detailed imaging of dendrites, dendritic spines, axons, and axon terminal fields within a few hours to a few days after inoculation. Green fluorescent protein (GFP) expression is first detected within 1 hour of inoculation. The virus generates a Golgi‐like appearance in all neurons or glia of regions of the brain tested. Whole‐cell patch‐clamp electrophysiology, calcium digital imaging with fura‐2, and time‐lapse digital imaging showed that neurons appeared physiologically normal after expressing viral transgenes. The virus has a wide range of species applicability, including mouse, rat, hamster, human, and Drosophila cells. By using dG‐VSV, we show efferent projections from the suprachiasmatic nucleus terminating in the periventricular region immediately dorsal to the nucleus. DG‐VSVs with genes coding for different color reporters allow multicolor visualization of neurons wherever applied. J. Comp. Neurol. 516:456–481, 2009. © 2009 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>19672982</pmid><doi>10.1002/cne.22131</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9967
ispartof Journal of comparative neurology (1911), 2009-10, Vol.516 (6), p.456-481
issn 0021-9967
1096-9861
language eng
recordid cdi_proquest_miscellaneous_754550807
source Wiley-Blackwell Journals; MEDLINE
subjects Animals
Brain - physiology
Brain - ultrastructure
Brain - virology
Cells, Cultured
Drosophila
Gene Transfer Techniques
Genes, Reporter
Genetic Vectors
Humans
Lentivirus
Membrane Glycoproteins - genetics
Mice
neuroanatomy
Neuroglia - ultrastructure
Neuroglia - virology
Neurons - physiology
Neurons - ultrastructure
Neurons - virology
neurophysiology
rapid gene expression
reporter gene
RNA, Messenger - metabolism
RNA, Viral - genetics
Transgenes
Vesicular stomatitis virus
Vesiculovirus - genetics
Vesiculovirus - physiology
Viral Envelope Proteins - genetics
virus
Virus Replication
Viruses - genetics
title Viral strategies for studying the brain, including a replication-restricted self-amplifying delta-G vesicular stomatis virus that rapidly expresses transgenes in brain and can generate a multicolor golgi-like expression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A48%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Viral%20strategies%20for%20studying%20the%20brain,%20including%20a%20replication-restricted%20self-amplifying%20delta-G%20vesicular%20stomatis%20virus%20that%20rapidly%20expresses%20transgenes%20in%20brain%20and%20can%20generate%20a%20multicolor%20golgi-like%20expression&rft.jtitle=Journal%20of%20comparative%20neurology%20(1911)&rft.au=van%20den%20Pol,%20Anthony%20N.&rft.date=2009-10-20&rft.volume=516&rft.issue=6&rft.spage=456&rft.epage=481&rft.pages=456-481&rft.issn=0021-9967&rft.eissn=1096-9861&rft_id=info:doi/10.1002/cne.22131&rft_dat=%3Cproquest_cross%3E67594887%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67594887&rft_id=info:pmid/19672982&rfr_iscdi=true