Design of Core−Shell-Type Nanoparticles Carrying Stable Radicals in the Core

Utilizing the self-assembled core−shell-type polymeric micelle technique, high-performance nanoparticles possessing stable radicals in the core and reactive groups on the periphery were prepared. The anionic ring-opening polymerization of ethylene oxide (EO) was carried out using potassium 3,3-dieth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomacromolecules 2009-03, Vol.10 (3), p.596-601
Hauptverfasser: Yoshitomi, Toru, Miyamoto, Daisuke, Nagasaki, Yukio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 601
container_issue 3
container_start_page 596
container_title Biomacromolecules
container_volume 10
creator Yoshitomi, Toru
Miyamoto, Daisuke
Nagasaki, Yukio
description Utilizing the self-assembled core−shell-type polymeric micelle technique, high-performance nanoparticles possessing stable radicals in the core and reactive groups on the periphery were prepared. The anionic ring-opening polymerization of ethylene oxide (EO) was carried out using potassium 3,3-diethoxypropanolate as an initiator, followed by mesylation with methanesulfonyl chloride to obtain acetal-poly(ethylene glycol)-methanesulfonate (acetal-PEG-Ms; 1). Compound 1 was reacted with potassium O-ethyldithiocarbonate, followed by treatment with n-propylamine to obtain heterobifunctional PEG derivatives containing both sulfanyl and acetal terminal groups (acetal-PEG-SH) (2) in a highly selective and quantitative manner. Poly(ethylene glycol)-block-poly(chloromethylstyrene) (acetal-PEG-b-PCMS) (3) was synthesized by the free-radical telomerization of chloromethylstyrene (CMS) using 2 as a telogen. The chloromethyl groups in the PCMS segment of the block copolymer (3) were quantitatively converted to 2,2,6,6-tetramethylpiperidinyloxys (TEMPOs) via the amination of 3 with 4-amino-TEMPO to obtain acetal-PEG-b-PCMS containing TEMPO moieties (4). The obtained 4 formed core−shell-type nanoparticles in aqueous media when subjected to the dialysis method: the cumulant average diameter of the nanoparticles was about 40 nm, and the nanoparticles emitted intense electron paramagnetic resonance (EPR) signals. The TEMPO radicals in the core of the nanoparticles showed reduction resistance even in the presence of 3.5 mM ascorbic acid. This means that these nanoparticles are anticipated as high-performance bionanoparticles that can be used in vivo.
doi_str_mv 10.1021/bm801278n
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_754549297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733335328</sourcerecordid><originalsourceid>FETCH-LOGICAL-a442t-f240d1e9099b0ea864ac78f19efe7b2aacb69a058da504c2cc24c98796de2b163</originalsourceid><addsrcrecordid>eNqFkMlOwzAQQC0EYikc-AGUC0IcArbjJT6iskqoSLSco4kzgaAsxU4P_QPOfCJfgqERvSDhOXg0erPoEXLI6BmjnJ3nTUoZ12m7QXaZ5CoWivLNn1zGWhu9Q_a8f6WUmkTIbbLDTAipxC6ZXKKvntuoK6Nx5_Dz_WP6gnUdz5ZzjCbQdnNwfWVr9NEYnFtW7XM07SGvMXqEorJQ-6hqo_4Ff_r3yVYZSngw_CPydH01G9_G9w83d-OL-xiE4H1cckELhoYak1OEVAmwOi2ZwRJ1zgFsrgxQmRYgqbDcWi6sSbVRBfKcqWRETlZz5657W6Dvs6byNhwOLXYLn2kppDDc6P_JJDyZ8DSQpyvSus57h2U2d1UDbpkxmn17zn49B_ZomLrIGyzW5CA2AMcDAD5IKh20tvK_HGdcJEypNQfWZ6_dwrVB2x8LvwDb65D4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733335328</pqid></control><display><type>article</type><title>Design of Core−Shell-Type Nanoparticles Carrying Stable Radicals in the Core</title><source>American Chemical Society</source><source>MEDLINE</source><creator>Yoshitomi, Toru ; Miyamoto, Daisuke ; Nagasaki, Yukio</creator><creatorcontrib>Yoshitomi, Toru ; Miyamoto, Daisuke ; Nagasaki, Yukio</creatorcontrib><description>Utilizing the self-assembled core−shell-type polymeric micelle technique, high-performance nanoparticles possessing stable radicals in the core and reactive groups on the periphery were prepared. The anionic ring-opening polymerization of ethylene oxide (EO) was carried out using potassium 3,3-diethoxypropanolate as an initiator, followed by mesylation with methanesulfonyl chloride to obtain acetal-poly(ethylene glycol)-methanesulfonate (acetal-PEG-Ms; 1). Compound 1 was reacted with potassium O-ethyldithiocarbonate, followed by treatment with n-propylamine to obtain heterobifunctional PEG derivatives containing both sulfanyl and acetal terminal groups (acetal-PEG-SH) (2) in a highly selective and quantitative manner. Poly(ethylene glycol)-block-poly(chloromethylstyrene) (acetal-PEG-b-PCMS) (3) was synthesized by the free-radical telomerization of chloromethylstyrene (CMS) using 2 as a telogen. The chloromethyl groups in the PCMS segment of the block copolymer (3) were quantitatively converted to 2,2,6,6-tetramethylpiperidinyloxys (TEMPOs) via the amination of 3 with 4-amino-TEMPO to obtain acetal-PEG-b-PCMS containing TEMPO moieties (4). The obtained 4 formed core−shell-type nanoparticles in aqueous media when subjected to the dialysis method: the cumulant average diameter of the nanoparticles was about 40 nm, and the nanoparticles emitted intense electron paramagnetic resonance (EPR) signals. The TEMPO radicals in the core of the nanoparticles showed reduction resistance even in the presence of 3.5 mM ascorbic acid. This means that these nanoparticles are anticipated as high-performance bionanoparticles that can be used in vivo.</description><identifier>ISSN: 1525-7797</identifier><identifier>EISSN: 1526-4602</identifier><identifier>DOI: 10.1021/bm801278n</identifier><identifier>PMID: 19191564</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Cyclic N-Oxides - chemistry ; Exact sciences and technology ; Free Radicals - chemistry ; Macromolecular Substances - chemical synthesis ; Macromolecular Substances - chemistry ; Micelles ; Nanoparticles - chemistry ; Organic polymers ; Particle Size ; Physicochemistry of polymers ; Polyethylene Glycols - chemical synthesis ; Polyethylene Glycols - chemistry ; Polymers with particular properties ; Preparation, kinetics, thermodynamics, mechanism and catalysts ; Surface Properties</subject><ispartof>Biomacromolecules, 2009-03, Vol.10 (3), p.596-601</ispartof><rights>Copyright © 2009 American Chemical Society</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a442t-f240d1e9099b0ea864ac78f19efe7b2aacb69a058da504c2cc24c98796de2b163</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/bm801278n$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/bm801278n$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27078,27926,27927,56740,56790</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21243166$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19191564$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yoshitomi, Toru</creatorcontrib><creatorcontrib>Miyamoto, Daisuke</creatorcontrib><creatorcontrib>Nagasaki, Yukio</creatorcontrib><title>Design of Core−Shell-Type Nanoparticles Carrying Stable Radicals in the Core</title><title>Biomacromolecules</title><addtitle>Biomacromolecules</addtitle><description>Utilizing the self-assembled core−shell-type polymeric micelle technique, high-performance nanoparticles possessing stable radicals in the core and reactive groups on the periphery were prepared. The anionic ring-opening polymerization of ethylene oxide (EO) was carried out using potassium 3,3-diethoxypropanolate as an initiator, followed by mesylation with methanesulfonyl chloride to obtain acetal-poly(ethylene glycol)-methanesulfonate (acetal-PEG-Ms; 1). Compound 1 was reacted with potassium O-ethyldithiocarbonate, followed by treatment with n-propylamine to obtain heterobifunctional PEG derivatives containing both sulfanyl and acetal terminal groups (acetal-PEG-SH) (2) in a highly selective and quantitative manner. Poly(ethylene glycol)-block-poly(chloromethylstyrene) (acetal-PEG-b-PCMS) (3) was synthesized by the free-radical telomerization of chloromethylstyrene (CMS) using 2 as a telogen. The chloromethyl groups in the PCMS segment of the block copolymer (3) were quantitatively converted to 2,2,6,6-tetramethylpiperidinyloxys (TEMPOs) via the amination of 3 with 4-amino-TEMPO to obtain acetal-PEG-b-PCMS containing TEMPO moieties (4). The obtained 4 formed core−shell-type nanoparticles in aqueous media when subjected to the dialysis method: the cumulant average diameter of the nanoparticles was about 40 nm, and the nanoparticles emitted intense electron paramagnetic resonance (EPR) signals. The TEMPO radicals in the core of the nanoparticles showed reduction resistance even in the presence of 3.5 mM ascorbic acid. This means that these nanoparticles are anticipated as high-performance bionanoparticles that can be used in vivo.</description><subject>Applied sciences</subject><subject>Cyclic N-Oxides - chemistry</subject><subject>Exact sciences and technology</subject><subject>Free Radicals - chemistry</subject><subject>Macromolecular Substances - chemical synthesis</subject><subject>Macromolecular Substances - chemistry</subject><subject>Micelles</subject><subject>Nanoparticles - chemistry</subject><subject>Organic polymers</subject><subject>Particle Size</subject><subject>Physicochemistry of polymers</subject><subject>Polyethylene Glycols - chemical synthesis</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Polymers with particular properties</subject><subject>Preparation, kinetics, thermodynamics, mechanism and catalysts</subject><subject>Surface Properties</subject><issn>1525-7797</issn><issn>1526-4602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMlOwzAQQC0EYikc-AGUC0IcArbjJT6iskqoSLSco4kzgaAsxU4P_QPOfCJfgqERvSDhOXg0erPoEXLI6BmjnJ3nTUoZ12m7QXaZ5CoWivLNn1zGWhu9Q_a8f6WUmkTIbbLDTAipxC6ZXKKvntuoK6Nx5_Dz_WP6gnUdz5ZzjCbQdnNwfWVr9NEYnFtW7XM07SGvMXqEorJQ-6hqo_4Ff_r3yVYZSngw_CPydH01G9_G9w83d-OL-xiE4H1cckELhoYak1OEVAmwOi2ZwRJ1zgFsrgxQmRYgqbDcWi6sSbVRBfKcqWRETlZz5657W6Dvs6byNhwOLXYLn2kppDDc6P_JJDyZ8DSQpyvSus57h2U2d1UDbpkxmn17zn49B_ZomLrIGyzW5CA2AMcDAD5IKh20tvK_HGdcJEypNQfWZ6_dwrVB2x8LvwDb65D4</recordid><startdate>20090309</startdate><enddate>20090309</enddate><creator>Yoshitomi, Toru</creator><creator>Miyamoto, Daisuke</creator><creator>Nagasaki, Yukio</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20090309</creationdate><title>Design of Core−Shell-Type Nanoparticles Carrying Stable Radicals in the Core</title><author>Yoshitomi, Toru ; Miyamoto, Daisuke ; Nagasaki, Yukio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a442t-f240d1e9099b0ea864ac78f19efe7b2aacb69a058da504c2cc24c98796de2b163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Cyclic N-Oxides - chemistry</topic><topic>Exact sciences and technology</topic><topic>Free Radicals - chemistry</topic><topic>Macromolecular Substances - chemical synthesis</topic><topic>Macromolecular Substances - chemistry</topic><topic>Micelles</topic><topic>Nanoparticles - chemistry</topic><topic>Organic polymers</topic><topic>Particle Size</topic><topic>Physicochemistry of polymers</topic><topic>Polyethylene Glycols - chemical synthesis</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Polymers with particular properties</topic><topic>Preparation, kinetics, thermodynamics, mechanism and catalysts</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoshitomi, Toru</creatorcontrib><creatorcontrib>Miyamoto, Daisuke</creatorcontrib><creatorcontrib>Nagasaki, Yukio</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biomacromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoshitomi, Toru</au><au>Miyamoto, Daisuke</au><au>Nagasaki, Yukio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of Core−Shell-Type Nanoparticles Carrying Stable Radicals in the Core</atitle><jtitle>Biomacromolecules</jtitle><addtitle>Biomacromolecules</addtitle><date>2009-03-09</date><risdate>2009</risdate><volume>10</volume><issue>3</issue><spage>596</spage><epage>601</epage><pages>596-601</pages><issn>1525-7797</issn><eissn>1526-4602</eissn><abstract>Utilizing the self-assembled core−shell-type polymeric micelle technique, high-performance nanoparticles possessing stable radicals in the core and reactive groups on the periphery were prepared. The anionic ring-opening polymerization of ethylene oxide (EO) was carried out using potassium 3,3-diethoxypropanolate as an initiator, followed by mesylation with methanesulfonyl chloride to obtain acetal-poly(ethylene glycol)-methanesulfonate (acetal-PEG-Ms; 1). Compound 1 was reacted with potassium O-ethyldithiocarbonate, followed by treatment with n-propylamine to obtain heterobifunctional PEG derivatives containing both sulfanyl and acetal terminal groups (acetal-PEG-SH) (2) in a highly selective and quantitative manner. Poly(ethylene glycol)-block-poly(chloromethylstyrene) (acetal-PEG-b-PCMS) (3) was synthesized by the free-radical telomerization of chloromethylstyrene (CMS) using 2 as a telogen. The chloromethyl groups in the PCMS segment of the block copolymer (3) were quantitatively converted to 2,2,6,6-tetramethylpiperidinyloxys (TEMPOs) via the amination of 3 with 4-amino-TEMPO to obtain acetal-PEG-b-PCMS containing TEMPO moieties (4). The obtained 4 formed core−shell-type nanoparticles in aqueous media when subjected to the dialysis method: the cumulant average diameter of the nanoparticles was about 40 nm, and the nanoparticles emitted intense electron paramagnetic resonance (EPR) signals. The TEMPO radicals in the core of the nanoparticles showed reduction resistance even in the presence of 3.5 mM ascorbic acid. This means that these nanoparticles are anticipated as high-performance bionanoparticles that can be used in vivo.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>19191564</pmid><doi>10.1021/bm801278n</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1525-7797
ispartof Biomacromolecules, 2009-03, Vol.10 (3), p.596-601
issn 1525-7797
1526-4602
language eng
recordid cdi_proquest_miscellaneous_754549297
source American Chemical Society; MEDLINE
subjects Applied sciences
Cyclic N-Oxides - chemistry
Exact sciences and technology
Free Radicals - chemistry
Macromolecular Substances - chemical synthesis
Macromolecular Substances - chemistry
Micelles
Nanoparticles - chemistry
Organic polymers
Particle Size
Physicochemistry of polymers
Polyethylene Glycols - chemical synthesis
Polyethylene Glycols - chemistry
Polymers with particular properties
Preparation, kinetics, thermodynamics, mechanism and catalysts
Surface Properties
title Design of Core−Shell-Type Nanoparticles Carrying Stable Radicals in the Core
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T00%3A25%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20Core%E2%88%92Shell-Type%20Nanoparticles%20Carrying%20Stable%20Radicals%20in%20the%20Core&rft.jtitle=Biomacromolecules&rft.au=Yoshitomi,%20Toru&rft.date=2009-03-09&rft.volume=10&rft.issue=3&rft.spage=596&rft.epage=601&rft.pages=596-601&rft.issn=1525-7797&rft.eissn=1526-4602&rft_id=info:doi/10.1021/bm801278n&rft_dat=%3Cproquest_cross%3E733335328%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733335328&rft_id=info:pmid/19191564&rfr_iscdi=true