Design of Core−Shell-Type Nanoparticles Carrying Stable Radicals in the Core
Utilizing the self-assembled core−shell-type polymeric micelle technique, high-performance nanoparticles possessing stable radicals in the core and reactive groups on the periphery were prepared. The anionic ring-opening polymerization of ethylene oxide (EO) was carried out using potassium 3,3-dieth...
Gespeichert in:
Veröffentlicht in: | Biomacromolecules 2009-03, Vol.10 (3), p.596-601 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 601 |
---|---|
container_issue | 3 |
container_start_page | 596 |
container_title | Biomacromolecules |
container_volume | 10 |
creator | Yoshitomi, Toru Miyamoto, Daisuke Nagasaki, Yukio |
description | Utilizing the self-assembled core−shell-type polymeric micelle technique, high-performance nanoparticles possessing stable radicals in the core and reactive groups on the periphery were prepared. The anionic ring-opening polymerization of ethylene oxide (EO) was carried out using potassium 3,3-diethoxypropanolate as an initiator, followed by mesylation with methanesulfonyl chloride to obtain acetal-poly(ethylene glycol)-methanesulfonate (acetal-PEG-Ms; 1). Compound 1 was reacted with potassium O-ethyldithiocarbonate, followed by treatment with n-propylamine to obtain heterobifunctional PEG derivatives containing both sulfanyl and acetal terminal groups (acetal-PEG-SH) (2) in a highly selective and quantitative manner. Poly(ethylene glycol)-block-poly(chloromethylstyrene) (acetal-PEG-b-PCMS) (3) was synthesized by the free-radical telomerization of chloromethylstyrene (CMS) using 2 as a telogen. The chloromethyl groups in the PCMS segment of the block copolymer (3) were quantitatively converted to 2,2,6,6-tetramethylpiperidinyloxys (TEMPOs) via the amination of 3 with 4-amino-TEMPO to obtain acetal-PEG-b-PCMS containing TEMPO moieties (4). The obtained 4 formed core−shell-type nanoparticles in aqueous media when subjected to the dialysis method: the cumulant average diameter of the nanoparticles was about 40 nm, and the nanoparticles emitted intense electron paramagnetic resonance (EPR) signals. The TEMPO radicals in the core of the nanoparticles showed reduction resistance even in the presence of 3.5 mM ascorbic acid. This means that these nanoparticles are anticipated as high-performance bionanoparticles that can be used in vivo. |
doi_str_mv | 10.1021/bm801278n |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_754549297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733335328</sourcerecordid><originalsourceid>FETCH-LOGICAL-a442t-f240d1e9099b0ea864ac78f19efe7b2aacb69a058da504c2cc24c98796de2b163</originalsourceid><addsrcrecordid>eNqFkMlOwzAQQC0EYikc-AGUC0IcArbjJT6iskqoSLSco4kzgaAsxU4P_QPOfCJfgqERvSDhOXg0erPoEXLI6BmjnJ3nTUoZ12m7QXaZ5CoWivLNn1zGWhu9Q_a8f6WUmkTIbbLDTAipxC6ZXKKvntuoK6Nx5_Dz_WP6gnUdz5ZzjCbQdnNwfWVr9NEYnFtW7XM07SGvMXqEorJQ-6hqo_4Ff_r3yVYZSngw_CPydH01G9_G9w83d-OL-xiE4H1cckELhoYak1OEVAmwOi2ZwRJ1zgFsrgxQmRYgqbDcWi6sSbVRBfKcqWRETlZz5657W6Dvs6byNhwOLXYLn2kppDDc6P_JJDyZ8DSQpyvSus57h2U2d1UDbpkxmn17zn49B_ZomLrIGyzW5CA2AMcDAD5IKh20tvK_HGdcJEypNQfWZ6_dwrVB2x8LvwDb65D4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733335328</pqid></control><display><type>article</type><title>Design of Core−Shell-Type Nanoparticles Carrying Stable Radicals in the Core</title><source>American Chemical Society</source><source>MEDLINE</source><creator>Yoshitomi, Toru ; Miyamoto, Daisuke ; Nagasaki, Yukio</creator><creatorcontrib>Yoshitomi, Toru ; Miyamoto, Daisuke ; Nagasaki, Yukio</creatorcontrib><description>Utilizing the self-assembled core−shell-type polymeric micelle technique, high-performance nanoparticles possessing stable radicals in the core and reactive groups on the periphery were prepared. The anionic ring-opening polymerization of ethylene oxide (EO) was carried out using potassium 3,3-diethoxypropanolate as an initiator, followed by mesylation with methanesulfonyl chloride to obtain acetal-poly(ethylene glycol)-methanesulfonate (acetal-PEG-Ms; 1). Compound 1 was reacted with potassium O-ethyldithiocarbonate, followed by treatment with n-propylamine to obtain heterobifunctional PEG derivatives containing both sulfanyl and acetal terminal groups (acetal-PEG-SH) (2) in a highly selective and quantitative manner. Poly(ethylene glycol)-block-poly(chloromethylstyrene) (acetal-PEG-b-PCMS) (3) was synthesized by the free-radical telomerization of chloromethylstyrene (CMS) using 2 as a telogen. The chloromethyl groups in the PCMS segment of the block copolymer (3) were quantitatively converted to 2,2,6,6-tetramethylpiperidinyloxys (TEMPOs) via the amination of 3 with 4-amino-TEMPO to obtain acetal-PEG-b-PCMS containing TEMPO moieties (4). The obtained 4 formed core−shell-type nanoparticles in aqueous media when subjected to the dialysis method: the cumulant average diameter of the nanoparticles was about 40 nm, and the nanoparticles emitted intense electron paramagnetic resonance (EPR) signals. The TEMPO radicals in the core of the nanoparticles showed reduction resistance even in the presence of 3.5 mM ascorbic acid. This means that these nanoparticles are anticipated as high-performance bionanoparticles that can be used in vivo.</description><identifier>ISSN: 1525-7797</identifier><identifier>EISSN: 1526-4602</identifier><identifier>DOI: 10.1021/bm801278n</identifier><identifier>PMID: 19191564</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Cyclic N-Oxides - chemistry ; Exact sciences and technology ; Free Radicals - chemistry ; Macromolecular Substances - chemical synthesis ; Macromolecular Substances - chemistry ; Micelles ; Nanoparticles - chemistry ; Organic polymers ; Particle Size ; Physicochemistry of polymers ; Polyethylene Glycols - chemical synthesis ; Polyethylene Glycols - chemistry ; Polymers with particular properties ; Preparation, kinetics, thermodynamics, mechanism and catalysts ; Surface Properties</subject><ispartof>Biomacromolecules, 2009-03, Vol.10 (3), p.596-601</ispartof><rights>Copyright © 2009 American Chemical Society</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a442t-f240d1e9099b0ea864ac78f19efe7b2aacb69a058da504c2cc24c98796de2b163</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/bm801278n$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/bm801278n$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27078,27926,27927,56740,56790</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21243166$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19191564$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yoshitomi, Toru</creatorcontrib><creatorcontrib>Miyamoto, Daisuke</creatorcontrib><creatorcontrib>Nagasaki, Yukio</creatorcontrib><title>Design of Core−Shell-Type Nanoparticles Carrying Stable Radicals in the Core</title><title>Biomacromolecules</title><addtitle>Biomacromolecules</addtitle><description>Utilizing the self-assembled core−shell-type polymeric micelle technique, high-performance nanoparticles possessing stable radicals in the core and reactive groups on the periphery were prepared. The anionic ring-opening polymerization of ethylene oxide (EO) was carried out using potassium 3,3-diethoxypropanolate as an initiator, followed by mesylation with methanesulfonyl chloride to obtain acetal-poly(ethylene glycol)-methanesulfonate (acetal-PEG-Ms; 1). Compound 1 was reacted with potassium O-ethyldithiocarbonate, followed by treatment with n-propylamine to obtain heterobifunctional PEG derivatives containing both sulfanyl and acetal terminal groups (acetal-PEG-SH) (2) in a highly selective and quantitative manner. Poly(ethylene glycol)-block-poly(chloromethylstyrene) (acetal-PEG-b-PCMS) (3) was synthesized by the free-radical telomerization of chloromethylstyrene (CMS) using 2 as a telogen. The chloromethyl groups in the PCMS segment of the block copolymer (3) were quantitatively converted to 2,2,6,6-tetramethylpiperidinyloxys (TEMPOs) via the amination of 3 with 4-amino-TEMPO to obtain acetal-PEG-b-PCMS containing TEMPO moieties (4). The obtained 4 formed core−shell-type nanoparticles in aqueous media when subjected to the dialysis method: the cumulant average diameter of the nanoparticles was about 40 nm, and the nanoparticles emitted intense electron paramagnetic resonance (EPR) signals. The TEMPO radicals in the core of the nanoparticles showed reduction resistance even in the presence of 3.5 mM ascorbic acid. This means that these nanoparticles are anticipated as high-performance bionanoparticles that can be used in vivo.</description><subject>Applied sciences</subject><subject>Cyclic N-Oxides - chemistry</subject><subject>Exact sciences and technology</subject><subject>Free Radicals - chemistry</subject><subject>Macromolecular Substances - chemical synthesis</subject><subject>Macromolecular Substances - chemistry</subject><subject>Micelles</subject><subject>Nanoparticles - chemistry</subject><subject>Organic polymers</subject><subject>Particle Size</subject><subject>Physicochemistry of polymers</subject><subject>Polyethylene Glycols - chemical synthesis</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Polymers with particular properties</subject><subject>Preparation, kinetics, thermodynamics, mechanism and catalysts</subject><subject>Surface Properties</subject><issn>1525-7797</issn><issn>1526-4602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMlOwzAQQC0EYikc-AGUC0IcArbjJT6iskqoSLSco4kzgaAsxU4P_QPOfCJfgqERvSDhOXg0erPoEXLI6BmjnJ3nTUoZ12m7QXaZ5CoWivLNn1zGWhu9Q_a8f6WUmkTIbbLDTAipxC6ZXKKvntuoK6Nx5_Dz_WP6gnUdz5ZzjCbQdnNwfWVr9NEYnFtW7XM07SGvMXqEorJQ-6hqo_4Ff_r3yVYZSngw_CPydH01G9_G9w83d-OL-xiE4H1cckELhoYak1OEVAmwOi2ZwRJ1zgFsrgxQmRYgqbDcWi6sSbVRBfKcqWRETlZz5657W6Dvs6byNhwOLXYLn2kppDDc6P_JJDyZ8DSQpyvSus57h2U2d1UDbpkxmn17zn49B_ZomLrIGyzW5CA2AMcDAD5IKh20tvK_HGdcJEypNQfWZ6_dwrVB2x8LvwDb65D4</recordid><startdate>20090309</startdate><enddate>20090309</enddate><creator>Yoshitomi, Toru</creator><creator>Miyamoto, Daisuke</creator><creator>Nagasaki, Yukio</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20090309</creationdate><title>Design of Core−Shell-Type Nanoparticles Carrying Stable Radicals in the Core</title><author>Yoshitomi, Toru ; Miyamoto, Daisuke ; Nagasaki, Yukio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a442t-f240d1e9099b0ea864ac78f19efe7b2aacb69a058da504c2cc24c98796de2b163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Cyclic N-Oxides - chemistry</topic><topic>Exact sciences and technology</topic><topic>Free Radicals - chemistry</topic><topic>Macromolecular Substances - chemical synthesis</topic><topic>Macromolecular Substances - chemistry</topic><topic>Micelles</topic><topic>Nanoparticles - chemistry</topic><topic>Organic polymers</topic><topic>Particle Size</topic><topic>Physicochemistry of polymers</topic><topic>Polyethylene Glycols - chemical synthesis</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Polymers with particular properties</topic><topic>Preparation, kinetics, thermodynamics, mechanism and catalysts</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoshitomi, Toru</creatorcontrib><creatorcontrib>Miyamoto, Daisuke</creatorcontrib><creatorcontrib>Nagasaki, Yukio</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biomacromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoshitomi, Toru</au><au>Miyamoto, Daisuke</au><au>Nagasaki, Yukio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of Core−Shell-Type Nanoparticles Carrying Stable Radicals in the Core</atitle><jtitle>Biomacromolecules</jtitle><addtitle>Biomacromolecules</addtitle><date>2009-03-09</date><risdate>2009</risdate><volume>10</volume><issue>3</issue><spage>596</spage><epage>601</epage><pages>596-601</pages><issn>1525-7797</issn><eissn>1526-4602</eissn><abstract>Utilizing the self-assembled core−shell-type polymeric micelle technique, high-performance nanoparticles possessing stable radicals in the core and reactive groups on the periphery were prepared. The anionic ring-opening polymerization of ethylene oxide (EO) was carried out using potassium 3,3-diethoxypropanolate as an initiator, followed by mesylation with methanesulfonyl chloride to obtain acetal-poly(ethylene glycol)-methanesulfonate (acetal-PEG-Ms; 1). Compound 1 was reacted with potassium O-ethyldithiocarbonate, followed by treatment with n-propylamine to obtain heterobifunctional PEG derivatives containing both sulfanyl and acetal terminal groups (acetal-PEG-SH) (2) in a highly selective and quantitative manner. Poly(ethylene glycol)-block-poly(chloromethylstyrene) (acetal-PEG-b-PCMS) (3) was synthesized by the free-radical telomerization of chloromethylstyrene (CMS) using 2 as a telogen. The chloromethyl groups in the PCMS segment of the block copolymer (3) were quantitatively converted to 2,2,6,6-tetramethylpiperidinyloxys (TEMPOs) via the amination of 3 with 4-amino-TEMPO to obtain acetal-PEG-b-PCMS containing TEMPO moieties (4). The obtained 4 formed core−shell-type nanoparticles in aqueous media when subjected to the dialysis method: the cumulant average diameter of the nanoparticles was about 40 nm, and the nanoparticles emitted intense electron paramagnetic resonance (EPR) signals. The TEMPO radicals in the core of the nanoparticles showed reduction resistance even in the presence of 3.5 mM ascorbic acid. This means that these nanoparticles are anticipated as high-performance bionanoparticles that can be used in vivo.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>19191564</pmid><doi>10.1021/bm801278n</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1525-7797 |
ispartof | Biomacromolecules, 2009-03, Vol.10 (3), p.596-601 |
issn | 1525-7797 1526-4602 |
language | eng |
recordid | cdi_proquest_miscellaneous_754549297 |
source | American Chemical Society; MEDLINE |
subjects | Applied sciences Cyclic N-Oxides - chemistry Exact sciences and technology Free Radicals - chemistry Macromolecular Substances - chemical synthesis Macromolecular Substances - chemistry Micelles Nanoparticles - chemistry Organic polymers Particle Size Physicochemistry of polymers Polyethylene Glycols - chemical synthesis Polyethylene Glycols - chemistry Polymers with particular properties Preparation, kinetics, thermodynamics, mechanism and catalysts Surface Properties |
title | Design of Core−Shell-Type Nanoparticles Carrying Stable Radicals in the Core |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T00%3A25%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20Core%E2%88%92Shell-Type%20Nanoparticles%20Carrying%20Stable%20Radicals%20in%20the%20Core&rft.jtitle=Biomacromolecules&rft.au=Yoshitomi,%20Toru&rft.date=2009-03-09&rft.volume=10&rft.issue=3&rft.spage=596&rft.epage=601&rft.pages=596-601&rft.issn=1525-7797&rft.eissn=1526-4602&rft_id=info:doi/10.1021/bm801278n&rft_dat=%3Cproquest_cross%3E733335328%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733335328&rft_id=info:pmid/19191564&rfr_iscdi=true |